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Origami-inspired designs possess attractive
applications to science and engineering (e.g.
deployable, self-assembling, adaptable systems).
The special geometric arrangement of panels and
creases gives rise to unique mechanical properties of
origami, such as reconfigurability, making origami
designs well suited for tunable structures. Although
often being ignored, origami structures exhibit
additional soft modes beyond rigid folding due to the
flexibility of thin sheets that further influence their
behaviour. Actual behaviour of origami structures
usually involves significant geometric nonlinearity,
which amplifies the influence of additional soft
modes. To investigate the nonlinear mechanics
of origami structures with deformable panels,
we present a structural engineering approach for
simulating the nonlinear response of non-rigid
origami structures. In this paper, we propose a fully
nonlinear, displacement-based implicit formulation
for performing static/quasi-static analyses of non-
rigid origami structures based on ‘bar-and-hinge’
models. The formulation itself leads to an efficient
and robust numerical implementation. Agreement
between real models and numerical simulations
demonstrates the ability of the proposed approach to
capture key features of origami behaviour.

1. Introduction
Origami concepts have been used in many fields
of science and engineering—applications include, for
example, deployable space structures [1,2], assembly
of complex architectures [3,4] and design of functional
metamaterials [3,5]. Various approaches have been
proposed in order to understand large deformations
of origami structures including the folding process.
Following rigid origami assumption, Belcastro & Hull [6]

2017 The Author(s) Published by the Royal Society. All rights reserved.
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developed an affine transformation map to describe the folding of a single vertex origami.
Tachi [7] extended this idea to simulate the folding of complex origami sheets with arbitrary
patterns. Wu & You [8] presented a quaternion-based formulation for rigid origami simulation.
For some particular patterns that can be assembled with repeated unit cells, such as the Miura-
ori and its derivatives [9,10], closed-form equations were derived to describe the entire folding
process. However, the aforementioned approaches, based on purely geometric considerations,
are applicable only to rigid origami, i.e. they assume that all the panels in an origami structure
are rigid surfaces.

Owing to the flexibility of thin sheets, origami structures actually gain additional degrees
of freedom that come from bending, stretching and shearing of panels. Thus, rigid origami
simulations are not sufficient to reflect the actual behaviour of a physical origami structure. Direct
modelling of origami structures is possible by means of finite-element (FE) analysis with shell
elements [11]. It provides detailed information such as stress distribution, but also requires a
time-consuming cycle for both modelling and computing, including pre- and post-processing
[12–15]. Shell elements are typically computationally expensive and have issues associated with
numerical artefacts, such as shear locking and membrane locking [16–18]. As the thickness of the
origami panels decreases, specialized approaches are needed [19]. In addition, local instabilities
may influence the convergence of the analysis on the global scale. In some instances, the
approximate global behaviour of an origami structure is of more interest than high-resolution
local deformations. In such instances, a simpler and specialized analysis tool is required and
should be able to track global deformations of origami structures, while being less sensitive to
local instabilities.

A commonly adopted technique to simplify the analysis of origami structures consists of
representing an origami structure with a reduced degree-of-freedom model. Resch & Christiansen
[20] exploited linear elastic rotational hinges for the folding creases, and modelled each panel
using a plane stress element. Kumar & Pellegrino [21] used triangulated truss mechanisms
to represent origami structures for kinematic path analyses. Evans et al. [22] ignored in-plane
deformations, but introduced extra diagonal bending lines within each panel to reflect the
bending of panels. Tachi [23] used a similar simplification while adopting an iterative strategy to
handle large developable transformations. Such simplification was also adopted by Brunck [24].

Schenk & Guest [25,26] proposed a bar-and-hinge model, where an origami sheet is
triangulated to a truss framework with constrained rotational hinges. The basic idea of the model
is shown in figure 1, considering the Miura-ori as an example. Bars are placed along straight fold
lines, and across panels for in-plane stiffness. The rotational hinges are along bars connecting
panels to model folding of creases, and along bars across panels to model bending of panels. Such
simplified representation is effective for origami structures with quadrilateral panels [27,28]. A
linear elastic formulation in association with the bar-and-hinge model was derived to analyse
infinitesimal deformations of origami [25]. Both the bars and the rotations are assigned with
constant stiffness. The same discretization scheme was adopted by Wei et al. [29] to simulate
bending of the Miura-ori, based on an explicit formulation through time integration without
construction of stiffness matrices. Artificial damping is needed to force the structure to come
to rest, which is a strategy usually used in computer animation to simulate soft surfaces such as
cloth [30]. In the bar-and-hinge model, triangular panels may not need to be divided—previous
work by Guest & Pellegrino [31] showed the effectiveness of such bar-and-hinge simplification in
modelling a triangulated cylindrical pattern.

The structural analysis formulation proposed by Schenk & Guest [25] captures the global
deformation modes of various origami structures well. Based on reference [25], Fuchi et al. [32,33]
implemented the linear bar-and-hinge model as the structural analysis module for topology
optimization of origami structures. Filipov et al. [3] used a variation of the model with enriched
discretization to analyse mechanical properties of the so-called zipper origami tube. Notably, the
theory associated to the bar-and-hinge simplification has only been developed for infinitesimal
deformations; however, for many applications, the attractive feature of origami is its ability to
undergo large configurational transformations. Therefore, there is a need for a robust and simple
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Figure 1. (a) The Miura-ori unit cell. (b) The bar-and-hinge model for a unit cell of Miura-ori. The black bars represent creases
and boundaries of the origami and the blue bars are added to model in-plane and out-of-plane deformations of the panels.
(Online version in colour).

approach that can simulate large deformations and displacements of origami structures—this is
the focus of the present work.

In this paper, we propose a general nonlinear formulation for structural analysis of origami
structures associated with arbitrary bar-and-hinge models. The formulation is displacement-based, and
considers both geometric and material nonlinearities, building up a fully nonlinear framework
for large displacement and large deformation analyses of origami structures. It is more than
a straightforward extension of the existing linear formulation [25]. For instance, geometric
nonlinearity arising from large rotations must be carefully addressed to avoid singularities which
usually do not arise under infinitesimal deformation. The proposed formulation is implicit,
which enforces equilibrium at each converged incremental step; thus, it is more suitable for
static/quasi-static analysis compared to explicit approaches by direct time integration.

The idealization of this paper is motivated by the pioneering work of Prof. Richard H.
Gallagher on matrix structural analysis [34–36] and FE [37]. His work paved the way for many
developments in the field and thus our numerical formulation of nonlinear mechanics for non-
rigid origami is inspired from the fundamental work by Gallagher and his colleagues. The
remainder of this paper is organized as follows. Section 2 presents the derivation and associated
components of the formulation. Special attention is paid to the geometric terms in the tangent
stiffness matrix. Section 3 addresses the solution scheme for the nonlinear formulation. Section 4
provides numerical examples of origami simulations using the nonlinear bar-and-hinge model.
We compare numerical simulations with paper-made models to manifest that the proposed
approach is able to capture key features in the deformation process of origami structures.
Conclusions are drawn in §5. Three appendices supplement the paper, including a nomenclature.
The proposed formulation is implemented by the ‘MERLIN’ software written in MATLAB [38],
which is attached as electronic supplementary material.

2. Nonlinear formulation for bar-and-hinge models
From the aforementioned discussion, we adopt a potential energy approach to formulate the
nonlinear bar-and-hinge model. This is followed by the FE implementation of bar elements
and rotational spring elements. The treatment of finite rotations is a major aspect of the
present work because the classical approach of using trigonometric functions to derive internal
force vectors and tangent stiffness matrices fails due to singularities in the gradients of those
functions. Thus, we propose enhanced formulae based on distance vectors and functions which
are free of singularities in their gradients. Next, we provide the constitutive relationships
for bars and rotational springs. The relevant aspect there is that we transfer the problem of
(local) contact to the constitutive model of the rotational springs. These remarks are elaborated
upon below.
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(a) Principle of stationary potential energy
The potential energy of the bar-and-hinge system, which is assumed to be conservative, is only
a function of the current configuration, independent of deformation history. Thus, we use the
principle of stationary potential energy [39] to derive the equilibrium condition and tangent
stiffness matrix, while accounting for both material (constitutive relationship) and geometric
nonlinearities. We describe the kinematics by the total Lagrangian approach, taking reference
to the initial configuration. The potential energy of the system comprises of internal strain
energy (or stored energy) and external (load) work (Vext). We separate the strain energy into two
components: one stored in the bar elements (Ubar) and the other stored in the rotational springs
(Uspr). Thus, we have the following expression for the total potential energy:

Π =Ubar +Uspr − Vext. (2.1)

The equilibrium of the system is reached when the potential energy is stationary, that is, the first
variation of the total potential energy becomes zero. Considering the origami discretization given
by the bar-and-hinge model, we obtain the directional derivative of the total potential energy with
respect to finite degrees of freedom as follows:

DΠδv= δvTR= 0. (2.2)

The term D denotes the directional derivative operator, δv refers to a virtual displacement and
R denotes the residual force vector. For clarity, let us denote the vector X as the collection
of nodal coordinates in the undeformed configuration, and x as nodal coordinates in the
deformed configuration. The (total) displacement vector u is defined as u= x− X. The nonlinear
equilibrium equation can be symbolically assembled as follows:

R(u)=Tbar(u)+ Tspr(u)− F(u)= 0. (2.3)

The vector F contains the forces applied to the nodes of the bar-and-hinge system, and T denotes
the internal force vector. Linearization of the equilibrium equation (equation (2.3)) provides
second-order approximation about the total potential energy, which leads to the tangent stiffness
matrix, as shown below:

DRδu=Kδu, (2.4)

where δu refers to a small nodal displacement perturbation. Similarly, the tangent stiffness matrix
can be decomposed into two contributing terms:

K(u)=Kbar(u)+Kspr(u). (2.5)

We elaborate on the internal force vectors and tangent stiffness matrices of each component in
the following subsections. The goal is to assemble the internal force vector and tangent stiffness
matrix of the whole structure.

(b) Implementation of bar elements
We have adopted hyperelasticity as the basis for our constitutive models in the paper because
it provides a general framework that is able to represent a wider variety of constitutive
behaviours than traditional linear elasticity (adopted in the original bar-and-hinge model). For
many materials, linear elastic models do not accurately describe the observed material behaviour
and thus hyperelasticity provides a means of modelling the stress–strain behaviour of such
materials—this is helpful to capture the actual behaviour of origami sheets made with different
materials (such as composites). For instance, we can easily consider materials with different
compression and tension stiffness. In addition, the linear elastic constitutive model is not physical
under large deformation, which could occur when an origami sheet has high in-plane compliance.
In the worst scenario, negative principal stretch could happen with a linear elastic constitutive
relationship, leading to unphysical response.
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Figure 2. Components of a bar element, which is part of an origami assemblage. (Online version in colour.)

The constitutive relationship of a hyperelastic material is governed by a strain energy density
function W [40]. This function is expressed in terms of the Green-Lagrange strain tensor E and its
energy conjugate second Piola–Kirchhoff (P-K) stress tensor S. We consider linear shape functions
for the bar element and write the strain energy function as a function of nodal displacements. This
FE formulation for nonlinear truss analysis has been extensively studied in previous literature
[39,41], and here it is adapted to origami assemblages as part of the proposed nonlinear bar-and-
hinge model. Below we summarize the FE formulation for bar elements using the matrix notation
as adopted in this paper.

Let us assume that the bar element is described in its local coordinates, as shown in figure 2. We
denote the area of one bar element as A(e), which is assumed to be constant along the longitudinal
direction. The stored energy of a bar element is given by

U(e)
bar =

∫L(e)

0
WA(e) dX. (2.6)

Because bar elements are one dimensional, we only need to consider one component per stress
tensor and strain tensor. Considering a linear shape function, we obtain the one-dimensional
Green-Lagrange strain EX as a function of the nodal displacements u(e) [39,41]:

EX =B1u(e) + 1
2 u(e)TB2u(e), (2.7)

where u(e) = [ua, va, wa, ub, vb, wb]T (figure 2). The vector B1 is given by

B1 = 1
L(e)

[−e1 e1], (2.8)

where e1 = [1, 0, 0]. The matrix B2 is

B2 = 1
(L(e))2

[
I3×3 −I3×3
−I3×3 I3×3

]
. (2.9)

The matrix I3×3 is the identity matrix of size 3 by 3. Substituting equation (2.7) into the gradient
of equation (2.6), we obtain the internal force vector T(e)

bar for a bar element e [39,41] as follows:

T(e)
bar = SXA(e)L(e)(BT

1 + B2u(e)), (2.10)

where SX refers to the one-dimensional (assuming X direction) component of the second P-K
stress tensor. Linearization of the internal force vector leads to the component tangent stiffness
matrix, which is given by

K(e)
bar =CA(e)L(e)(BT

1 + B2u(e))(BT
1 + B2u(e))T + SXA(e)L(e)B2. (2.11)

The term C is the one-dimensional tangent modulus defined as

C= ∂SX

∂EX
. (2.12)
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Figure 3. Components of a rotational spring element, which is part of an origami assemblage. (Online version in colour.)

Expanding the terms of the symmetric tangent stiffness matrix, we can recognize that K(e)
bar is a

summation of several matrices as follows:

K(e)
bar =K(e)

E +K(e)
1 +K(e)

2 +K(e)
G , (2.13)

where

K(e)
E =CA(e)L(e)BT

1 B1, (2.14)

K(e)
1 =CA(e)L(e)((B2u(e))B1 + BT

1 (B2u(e))T), (2.15)

K(e)
2 =CA(e)L(e)(B2u(e))(B2u(e))T (2.16)

and K(e)
G = SXA(e)L(e)B2. (2.17)

The matrix K(e)
E is the linear stiffness matrix, K(e)

G is the geometric stiffness matrix and (K(e)
1 +K(e)

2 )
forms the initial displacement matrix. To assemble the global stiffness matrix, the element stiffness
matrix needs to be transformed from its local coordinates to the global coordinates. The resultant
matrix, after transformation, can be derived explicitly, where B2 is invariant and B1 in global
coordinates (denoted B̃1) is composed of the directional cosines of the bar element, i.e.

B̃1 = 1
L(e)

[
−
(

Xb − Xa

L(e)

)T (
Xb − Xa

L(e)

)T
]

, (2.18)

where Xa and Xb are the global coordinates of nodes a and b, respectively.

(c) Rotational spring elements: basic description
For each rotational hinge that represents either a folding crease or bending diagonal on a panel,
its degree of rotation (or bending), measured by the dihedral angle between two planar surfaces,
is completely defined from the displacements and original coordinates of nodes. In the bar-and-
hinge model, a rotational spring element consists of four neighbouring nodes, which forms two
triangles, as shown in figure 3.

We denote the undeformed length of a rotational hinge (axis) as L(r). The rotational spring
elements are directly defined based on the nodal coordinates, and thus nodal displacements.
Therefore, no shape function is required and, as we directly work in the global coordinates, we do
not need to perform any transformation from local to global coordinates or vice versa. We assume
that the constitutive relationship for each rotational spring element is described by a stored energy
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function ψ =ψ(θ ), where θ is the dihedral angle. Thus, the total stored energy in a rotational
spring element is

U(r)
spr =ψ(θ ). (2.19)

We can define the resistance moment as

M= ∂ψ(θ )
∂θ

. (2.20)

The internal force vector associated with a rotational spring element is obtained as

T(r)
spr(u)= T̃

(r)
spr(x)= dψ

dθ
dθ
dx
=M

dθ
dx(r)

. (2.21)

The nodal coordinates x(r) determine the value of the associated dihedral angle. Recalling that
u= x− X, because X is constant, gradients with respect to u are equal to gradients with respect to
x. The tangent stiffness matrix of a rotational spring element r is then derived as the derivative of
the internal force vector:

K(r)
spr(u)= K̃

(r)
spr(x)= k

dθ
dx(r)

⊗ dθ
dx(r)

+M
d2θ

d(x(r))2
. (2.22)

The symbol ‘⊗’ means the tensor product. The tangent rotational stiffness k is defined by

k= dM
dθ

. (2.23)

The coupling effect between in-plane behaviour (W) and out-of-plane performance (ψ) of
origami sheets is not yet well understood. We avoid adding arbitrary and artificial coupling at
the current stage by assuming that ψ is only a function of θ , and θ will not affect the stiffness
of bars (W). The above formulation generalizes the linear rotational spring model to a nonlinear
model, which allows for additional flexibilities when accounting for specific material properties
of the panels.

(d) Geometry of rotational spring element: enhanced description
To complete the formulation of a rotational spring element as defined in §2c, we need to
obtain the geometric terms, i.e. the dihedral angle and its derivatives with respect to current
configuration (same as to nodal displacements). We remark that the common approach of using
direct differentiation of trigonometric functions [14,25] to handle these terms is not sufficient
for a robust nonlinear analysis because of the limitations and singularities associated with
trigonometric functions. Therefore, in this section, we present the enhanced formulae that will
eventually lead to a robust numerical implementation. As shown in figure 4, the geometry of a
rotational spring element consists of four nodes (i, j, k, �), two triangles, and one dihedral angle
(θ ). The two triangles lie on two intersecting planes. Let us denote a vector connecting any two
nodes as

rpq = x(r)
p − x(r)

q , (2.24)

where p and q are the labels of any pair of nodes. In addition, we define the normal vectors:

m= rij × rkj and n= rkj × rk�, (2.25)

where i, j, k, � are labels of the nodes associated with a rotational spring element as marked in
figure 4. The two vectors m and n point to the normal directions of the two intersecting planes.
The operator ‘×’ between two vectors denotes the cross product. In this paper, repeated indices
do not imply summation. Using this notation, the dihedral angle between the two triangles can
be determined by

θ = arccos
(

m · n
‖m‖‖n‖

)
. (2.26)

However, this expression is not enough to describe the whole range of rotation, because there
is no distinction for angles within the ranges of [0,π ) and [π , 2π ). Therefore, we introduce the
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Figure 4. (a) Geometry of a rotational spring element. The two triangles lies on two intersecting planes, painted with two
different colours. The three space vectors (i.e. rij , rkj , rk�), drawn with solid lines are sufficient to define the dihedral angle
between the two planes. (b)–(d) An illustration of the consistent assignment for rotation angleθ of a rotational spring element
turning from 0 to 2π (360◦). (Online version in colour.)

following definition to expand the domain of definition to [0, 2π ), that is:

θ = η arccos
(

m · n
‖m‖‖n‖

)
mod 2π , (2.27)

where η is a sign indicator defined as,

η=
⎧⎨
⎩

sgn(m · rk�), m · rk� �= 0;

1, m · rk� = 0.
(2.28)

The symbol ‘mod’ means modulo operation. The exception of m · rk� = 0 occurs when the dihedral
angle is 0 or π , i.e. the two triangular panels lie on the same plane. Thus adopting equation (2.27),
we get a consistent description for all possible rotations of two origami panels if penetration does
not happen, that is, from 0 to 2π , as shown in figure 4b–d.

Such a large range of rotation (θ varying from 0 to 2π ) makes it possible for a mountain fold
to become a valley and vice versa. The transition between mountain and valley folds is naturally
included in our model. Because our formulation follows an energy approach, it handles both
mountain and valley folds in a unified way. For instance, when a mountain fold transitions to a
valley fold, it passes through the ‘flat state’, which corresponds to θ = π . Because we define our
constitutive model for rotational springs for the range from 0 to 2π , θ = π is a regular state during
the rotation process. Thus, we do not need any special treatment to handle switching between
mountain and valley folds.

Next, we need the first derivative of the rotation angle with respect to nodal coordinates.
Differentiation using the chain rule results in formulae that become numerically unstable
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near the angles 0 and π , because of the sine function in the denominator, as shown in
equations (2.29)–(2.32):

∂θ

∂x(r)
i

= −1
sin(θ )

rkj ×
‖m‖2n− (m · n)m
‖m‖3‖n‖ , (2.29)

∂θ

∂x(r)
�

= −1
sin(θ )

rkj ×
‖n‖2m− (n ·m)n
‖n‖3‖m‖ , (2.30)

∂θ

∂x(r)
j

= −1
sin(θ )

(
(rij − rkj)×

‖m‖2n− (m · n)m
‖m‖3‖n‖ − rk� ×

‖n‖2m− (n ·m)n
‖n‖3‖m‖

)
(2.31)

and
∂θ

∂x(r)
k

= −1
sin(θ )

(
(rk� − rkj)×

‖n‖2m− (n ·m)n
‖n‖3‖m‖ − rij ×

‖m‖2n− (m · n)m
‖m‖3‖n‖

)
. (2.32)

These expressions contain terms that will reach singularity when sin(θ )= 0. Theoretically, these
formulae have well-defined limits as sin(θ ) approaches 0, but in numerical computation, such
singularities cannot be handled by floating point arithmetic. The use of inverse sine function to
define θ leads to the same problem [25].

Therefore, we move from a trigonometric-based approach to an approach based on distance
vectors and functions. By means of some simplifying transformations [42,43], one can obtain
equivalent expressions for the gradients that are free of any singularities in their terms, as shown
below:

∂θ

∂x(r)
i

= ‖rkj‖
‖m‖2 m, (2.33)

∂θ

∂x(r)
�

=−‖rkj‖
‖n‖2 n, (2.34)

∂θ

∂x(r)
j

=
(

rij · rkj

‖rkj‖2
− 1

)
∂θ

∂x(r)
i

− rk� · rkj

‖rkj‖2
∂θ

∂x(r)
�

(2.35)

and
∂θ

∂x(r)
k

=
(

rk� · rkj

‖rkj‖2
− 1

)
∂θ

∂x(r)
�

− rij · rkj

‖rkj‖2
∂θ

∂x(r)
i

. (2.36)

The above equations are actually equivalent to direct differentiations given by equations
(2.29)–(2.32), but because they eliminate the sine functions in the denominators, they provide
more robust and simpler formulae, which dramatically increase the accuracy and efficiency of
numerical evaluations. Details of the simplification are elaborated in appendix A.

These simplified gradients also provide physical insight into the internal forces generated by a rotational
spring. For example, from equations (2.33) and (2.34), we see that the internal force at node i contributed
by the rotational spring is always along the direction of m, and the internal force at node � is always along
the direction of n. The math directly reflects the physics: the torque generated by the rotational spring along
axis rkj results in a perpendicular force on each of the two intersecting panels.

By differentiating the above formulae, we obtain the second-order derivative (i.e. the Hessian)
of the rotation angle with respect to nodal coordinates, which is used to construct the tangent
stiffness matrix associated with a rotational spring element (see equation (2.22)). The complete
Hessian has 16 blocks of submatrices, where each block is of size 3 by 3, referring to the 3 degrees-
of-freedom (x, y, z) at a node. Owing to symmetry of the Hessian, we only need to derive 10 blocks
of such submatrices. For example, the first block, i.e. derivative with respect to the 3 degrees-
of-freedom at node i, is given by

∂2θ

∂(x(r)
i )2
=− ‖rkj‖
‖m‖4 (m⊗ (rkj ×m)+ (rkj ×m)⊗m), (2.37)
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which is clearly symmetric. The complete expressions for the 16 blocks are elaborated in
appendix A. The correctness of the formulae is verified by comparing analytical expressions with
finite difference (FD) approximations [44], which is presented in appendix B.

(e) Constitutive relationships for bars
As discussed in §2b, the behaviour of bars can be hyperelastic in our formulation. We use the
Ogden constitutive model [40] for the numerical examples in this paper. In this section, we look
at the implementation of the Ogden model in the nonlinear bar-and-hinge model. In the Ogden
model, the strain energy density W is expressed in terms of the principal stretches as follows:

W(E)= Ŵ(λ1, λ2, λ3)=
N∑

j=1

μj

αj
(λ
αj

1 + λ
αj

2 + λ
αj

3 − 3), (2.38)

where λj denotes the principal stretches, and N, μj and αj are the material constants. For one-
dimensional bar elements, the material is always under uniaxial tension or compression. Thus,
only the principal stretch λ1 is relevant. Starting from the identity λ1 =

√
2EX + 1 [41] and

applying the chain rule, the 2nd Piola-Kirchhoff stress is given by

SX = ∂W
∂EX
= ∂Ŵ
∂λ1

dλ1

dEX
=

N∑
j=1

μjλ
αj−2
1 . (2.39)

Accordingly, the tangent modulus in equation (2.11) is derived as

C= ∂SX

∂EX
= ∂SX

∂λ1

dλ1

dEX
=

N∑
j=1

μj(αj − 2)λ
αj−4
1 . (2.40)

As the undeformed configuration (SX = 0) is in a stress-free state, we have the constraint for μj as

SX =
N∑

j=1

μj = 0. (2.41)

Then, we obtain the tangent modulus

C(λ1 = 1)=C0 =
N∑

j=1

μjαj. (2.42)

Taking the special case with N= 2, we determine all of the material constants by providing α1, α2
and the initial tangent modulus C0. An advantage of the Ogden model is that it can represent a
range of hyperelastic behaviour by fine-tuning a few parameters [40,45]. For example, there are
three Ogden material models shown in figure 5. Ogden-1 material with parameters α1 = 5 and
α2 = 1 behaves similarly to a linear elastic material under small strain. Ogden-2 material is stiffer
in compression than in tension, while Ogden-3 material is stiffer in tension than in compression.
We will use constitutive models Ogden-1 and Ogden-2 in the numerical examples.

(f) Constitutive relationships for rotational springs
In the literature, rotational hinges in origami structures are usually supposed to be linear elastic
[14,20,22,25]. Therefore, following the notation in §2c, the explicit expression for the moment (M)
generated by the linear elastic rotational spring is given as

M= L(r)k(θ − θ0), (2.43)

where k is the rotational stiffness modulus per unit length along the axis (referring to undeformed
configuration). The angle θ0 is the neutral angle where the rotational spring is at a stress-free state.
There are two main limitations of the linear model. First, the linear constitutive relationship allows
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Figure 5. Different hyperelastic material models in uniaxial strain based on the Ogdenmodel. The plot shows normalized (2nd
P-K) stress versus principal stretch (λ1). (Online version in colour.)

for only one adjustable parameter, which is the constant tangent stiffness k. Hence, this model has
limited tunability and adaptivity. Second, the linear model does not detect local penetration of
origami panels, and thus requires additional kinematic constraints to prevent local penetration.
These two drawbacks motivate us to seek new constitutive relations that can provide richer
tunability and better physical agreement.

In §2c, we generalized the constitutive relationship for a rotational spring to nonlinear
functions. In this section, we introduce a nonlinear constitutive relationship improved from
the linear elastic relationship, which assumes that the rotational springs have constant stiffness
throughout most of its rotation range, while exhibiting excessive stiffness when the panels are
locally close to contact. The expression for M is given as

M=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L(r)k0(θ1 − θ0)+
(

2k0θ1

π

)
tan

(
π (θ − θ1)

2θ1

)
, 0< θ < θ1;

L(r)k0(θ − θ0), θ1 ≤ θ ≤ θ2;

L(r)k0(θ2 − θ0)+
(

2k0(2π − θ2)
π

)
tan

(
π (θ − θ2)
4π − 2θ2

)
, θ2 < θ < 2π .

(2.44)

The constitutive relationship is designed to have a continuous tangent rotational stiffness k for
θ ∈ (0, 2π ), as shown below:

k=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L(r)k0 sec2
(
π (θ − θ1)

2θ1

)
, 0< θ < θ1;

L(r)k0, θ1 ≤ θ ≤ θ2;

L(r)k0 sec2
(
π (θ − θ2)
4π − 2θ2

)
, θ2 < θ < 2π .

(2.45)

Extremely high stiffness occurs when the dihedral angle approaches 0 or 2π , and thus prevents
the local penetration of panels. The physics is clearly indicated by the fact that,

as θ→ 0 
⇒ k→∞ and as θ→ 2π 
⇒ k→∞. (2.46)

The parameters θ1 and θ2 can be related to the thickness of the panels. By observation, thicker
panels lead to an earlier increase of stiffness when two adjacent panels are close to contact,
thus θ1 and θ2 should be closer to π (i.e. the flat state). From a practical point of view, θ1 and
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Figure 6. Proposed nonlinear elastic constitutive model of rotational springs, with consideration of local contact. (a) dihedral
angle versus moment per unit length M, and (b) dihedral angle versus tangent rotational stiffness k. The parameters k0, θ1
and θ2 are tunable. The neutral angle θ0 yields the relaxed state withM= 0. (Online version in colour.)

θ2 shall not be too close to 0 and 2π , respectively, because then a numerical solver may skip
sharp increases of stiffness and continue to rotate, allowing penetration. Figure 6 demonstrates
the constitutive relationship of rotational springs described by the enriched linear model. In this
paper, both the bending and folding of origami structures are treated using the same rotational
spring constitutive model with different linear stiffness k0.

3. A solution scheme for nonlinear analysis
Origami structures are typically subject to highly geometric nonlinearity; however, the
conventional Newton–Raphson method is unable to capture the equilibrium path beyond limit
points [39,41,46,47]. Thus, to achieve a successful nonlinear analysis of the structure, we need a
suitable solution scheme. Here, we use the modified generalized displacement control method
(MGDCM) [48], a variant of arc-length methods, as the solver. The MGDCM method has shown
its advantages in tracking complicated solution paths of nonlinear problems compared to the
standard generalized displacement control method (GDCM) [49]. The method can follow the
equilibrium paths with snap-through and snap-back behaviours, and we will verify this using
the numerical examples.

The MGDCM solves the equilibrium equation R(u, λ)=T(u)− λF, following an incremental–
iterative procedure. The parameter λ is known as the load factor that controls the magnitude
of the external loads. The algorithm is summarized in algorithm 1.

In the kth iteration of the ith increment, the load factor increment �λi
k is determined by Leon

et al. [48]

�λi
k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�λ, i= 1, k= 1;

− (�û1
1 ·�ǔ1

k)

(�û1
1 ·�û1

k)
, i= 1, k> 1;

±�λ
∣∣∣∣∣ (�û1

1 ·�û1
1)

(�ûi
1 ·�ûi

1)

∣∣∣∣∣
1/2

, i> 1, k= 1;

− (�ûi
1 ·�ǔi

k)

(�ûi
1 ·�ûi

k)
, i> 1, k> 1.

(3.1)

The sign of the load factor increment in the third expression of equation (3.1) is determined by
sgn(�ûi−1

1 ·�ûi
1). The parameter �λ is the prescribed initial load factor. Typically, the choice of

�λ can play a major role in arc-length methods, and generally small values are good for capturing
complex nonlinear behaviours. Sometimes, even a slight change in the initial load factor may lead
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Algorithm 1 . MGDCM.

1: u1
0← 0, λ1

0← 0 � Initialization
2: for i= 1 to a specified increment number do
3: k← 0
4: while ‖�ui

k‖> tol do
5: k← k+ 1
6: Ti

k−1←T(ui
k−1), Ki

k−1←K(ui
k−1)

7: Ri
k−1← λi

k−1F− Ti
k−1

� Compute internal forces, tangent stiffness matrix and residual vector
8: Solve Ki

k−1�ûi
k = F, Ki

k−1�ǔi
k =Ri

k−1
9: Determine �λi

k
10: �ui

k←�λi
k�ûi

k +�ǔi
k � Notice for k= 1, �ǔi

1 = 0
11: ui

k← ui
k−1 +�ui

k, λi
k← λi

k−1 +�λi
k � Compute iterative update

12: end while
13: end for

to poor convergence. However, the MGDCM is not very sensitive to the value of the initial load
factor, which means that we can get convergent solutions for a relatively wide range of �λ [48].

4. Origami simulations
In this section, the nonlinear bar-and-hinge model is applied to structural analyses of various
origami structures. The examples start with a simple folding mechanism which is composed of
two triangular panels with a single joint line. The numerical results are compared with analytical
solutions to verify the implementation of the formulation. It is then followed by analyses of the
well-known Miura-ori, under different boundary conditions. The simulations are compared with
experiments performed using actual paper-made models. The last example tries to capture the
multi-stable behaviour of a helical origami tower structure, known as the Kresling pattern [50]
(E.A. Paulino 2015, personal communication). Simulations are conducted using the ‘MERLIN’
software [38], which is included as electronic supplementary material. Computational time is
provided to roughly show the efficiency of the software.1

In the examples, the properties of rotational spring elements are defined as described in
§2f. The tunable parameters are: (i) initial stiffness modulus: kF

0 represents folding of hinges
and kB

0 represents bending of panels; (ii) the partitions θ1, θ2 of the linear and penalty sections,
respectively, which are assumed to be the same for both bending and folding in each example.
As for the bar elements, they are assumed to have hyperelastic behaviour as described by the
second-term Ogden model based on parameters C0, α1 and α2—see §2e.

To improve the accuracy and robustness of the numerical implementation, we sometimes
need to normalize the geometric dimensions of the objects. During normalization, it is important
to remember that the material properties also need to be properly scaled.

In the current implementation, the shorter diagonal is always chosen to divide a quadrilateral
panel. This can be explained from an energy point of view: if we assume that the panel bending
stiffness is the same per unit length along both diagonals, then shorter diagonals are easier to bend
and thus require lower energy. This presumption is supported by three-dimensional scanning of
a deformed Miura sheet [28], which suggests that the bending of a parallelogram panel results
in localized curvature along the shorter diagonal. However, if the two diagonals are the same
length, then we have to make an arbitrary choice—improved discretization schemes might be
able to avoid this ambiguity.

1For reference, the MATLAB implementation was executed on a desktop equipped with Intel Xeon CPU (8 cores, 3.0 GHz).
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Figure 7. The simple fold example. (a) Geometry and boundary conditions. (b) Force diagram at node D. (Online version
in colour.)

(a) A simple fold
The first example comprises the necessary components for a rotational spring element to exist,
namely, four nodes, two triangular panels and one folding crease. The geometry and boundary
conditions of the structure are depicted in figure 7a. One of the panels is totally fixed on the
ground, and the other rotates about the crease line driven by a vertical force applied at the free
node D. Based on the bar-and-hinge simplification, the model is composed of one rotational hinge
and five bars. To verify the accuracy of the implementation, the numerical solution is compared
with analytical derivations.

The initial configuration is assigned with a dihedral angle at θ = 135◦, and the rotational spring
has a neutral angle at θ0 = 210◦. The values are chosen arbitrarily in order to make a fair evaluation
of the accuracy of the numerical implementation. The rotational spring uses the constitutive
relationship introduced in §2f, with θ1 = 90◦, θ2 = 210◦ and k0 = 1. The panels are assumed to
be rigid, and thus numerically, the bars are assigned a large value for the initial tangent stiffness
with C0 = 1010 to asymptotically approach rigidity. The material constitutive relationship for the
bar elements follows the pair of parameters: α1 = 2, α2 = 0 (i.e. Neo-Hookean material model,
as shown in figure 5), and member areas are assumed to be 10−4. Based on the current setting,
the analysis starts from a non-equilibrium state. Guided by the force diagram at node D shown
in figure 7b, the magnitude of the applied force can be derived as a function of the angle θ ,

Fext = Frot

cos(π − θ )
= M(θ )

L sin(π/3) cos(θ )
. (4.1)

The force Frot induced by the rotational spring is always orthogonal to the rotating panel (i.e.
the plane of BCD). Note that at the initial configuration, the value of Fext is negative when in
equilibrium, meaning that it needs to point upwards. Owing to the symmetry of the structure and
boundary conditions, the internal forces in bars BD and CD are of the same magnitude. Therefore,
FBD(=FCD) can be calculated as

FBD = Frot tan(θ )
2 sin(π/3)

= M(θ )

L sin2(π/3)
. (4.2)

The comparisons shown in figure 8 present great agreement between the numerical and analytical
solutions. This verification example serves as a reference for other simulations.

(b) Folding and bending of Miura-ori
Miura-ori is one of the most famous patterns in origami engineering and has been studied
extensively [5,9,28,51]. This example, as a verification of the proposed nonlinear formulation,
compares existing theoretical analyses of Miura-ori [26,29] with our numerical simulations. A
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Miura-ori can be configured by a few geometric parameters: a, b and α, as shown in figure 9.
In this example, we assign the following values: a= 0.02, b= 0.02 and α= 60◦. The material
properties are determined by the following parameters: folding stiffness kF

0 = 0.1, bar element
area A= 1× 10−5 and Ogden model parameters α1 = 5, α2 = 1, i.e. material Ogden-1 as shown
in figure 5. Because the theoretical predictions [26,29] are derived without considering surface
contact, we do not apply a local collision penalty in this example, so we set θ1 = 0◦, θ2 = 360◦.
In the compressed folding test, we adopt a bending stiffness kB

0 = 104 and stretching stiffness
C0 = 1010. For the bending test, i.e. non-rigid Miura-ori case, we reduce the bending stiffness and
stretching stiffness to kB

0 = 1 and C0 = 108, respectively.
The ratio kB

0 /k
F
0 is a key parameter that determines whether an origami is close to a mechanism

(rigid origami) or not. For example, as kB
0 /k

F
0→∞, we approach a situation where rigid panels

are connected by compliant hinges (rigid origami). When kB
0 /k

F
0→ 1, the panel and the fold have

the same stiffness (e.g. origami sheet folded from a single material such as metal) [25]. In this
example, we use two values for kB

0 /k
F
0 . In the folding simulation, we choose a relatively large ratio

(kB
0 /k

F
0 = 105), such that the origami structure is asymptotically rigid. In the bending simulation, a

smaller ratio (kB
0 /k

F
0 = 10) is used to simulate a non-rigid origami in which panel bending cannot

be neglected.

(i) Rigid Miura-ori: folding

First, we look at the folding kinematics of Miura-ori. The in-plane stiffness and the tangential
Poisson’s ratio [26,29,52] of Miura-ori have been derived analytically based on the rigid origami
assumption, with linear elastic rotational stiffness for the folding hinges [26,29]. If our proposed
formulation is correct, then it should be able to asymptotically simulate rigid origami by
assigning large panel bending stiffness and stretching stiffness, i.e. kB and C0. Applying in-plane
compression forces the Miura-ori to fold. We restrict the displacements of nodes at the left end
(x= 0) to the yz-plane, and fix the node at (x, y, z)= (0, 0, 0) in all three directions. The ground
nodes (z= 0) to the right end are not allowed to translate in the z-direction. Then, we apply
uniform forces of unit magnitude to all the nodes at the right end, towards the left (i.e. −x
direction). Figure 9d shows a side view of the boundary condition.

The in-plane compression starts from an almost flat state. We compare the load-displacement
curve and tangential Poisson’s ratio curve, obtained by the numerical method, with the analytical
predictions in [29]. The tangential Poisson’s ratio describes the Poisson’s ratio of a material at
an infinitesimal deformation limit, deviating from the current deformed configuration [26,29].
The ratio is defined as follows:

νLW =−dW/W
dL/L

=− L
W

dW
dL

, (4.3)
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Figure 9. (a) Paper-made Miura-ori model. (b) An isometric view of the initial configuration of the numerical model and
boundary conditions for the bending simulation. The angleγ between two edges is used to specify the initial configuration of a
Miura-ori, which equals 118.27◦ for the compression simulation and 90◦ for the bending simulation. In the bending simulation,
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the z-displacement, marked with a yellow circle (same node as S3). The blue dots show the nodes that are used to approximate
the global principal curvatures near the centre of the origami sheet. (c) A flattened unit cell of theMiura-ori. We take a= 0.02,
b= 0.02 and α = 60◦ for the simulations. (d) Illustration of the boundary conditions in the compression simulation from
a side view. (e) Side view of the boundary conditions for the bending simulation. (Online version in colour.)

where W and L are the bulk dimensions of a Miura-ori as depicted in figure 10b. Other measures of
the effect might be used to consider the large deformation nature of origami, such as the Poisson
function [53,54]. Here, we adopt the same tangential Poisson’s ratio definition as used for the
theoretical predictions to show that our proposed formulation is able to asymptotically capture
the correct kinematics of rigid origami. The theoretical Poisson’s ratio for a Miura-ori is given
as [26,29]

νLW =− tan2
(γ

2

)
, (4.4)

where angle γ is illustrated in figure 9b (close to the origin). We plot the tangential Poisson’s ratio
with respect to the folding ratio (i.e. L/Lunfold as shown in figure 10) of the Miura-ori, which equals
1 when the origami is fully flat, and 0 when fully folded. To get the numerical approximation, we
first interpolate the discrete values of W and L at all load steps to a continuous function using
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cubic splines, and then compute the Poisson’s ratio using equation (4.3). A very good agreement
is observed as shown in figure 10.

(ii) Non-rigid Miura-ori: bending

When the Miura-ori has non-rigid panels, it can present global out-of-plane deformations,
bending anticlastically into a saddle-shaped configuration. An elegant theoretical derivation
by Wei et al. [29] shows that the Poisson’s ratios of Miura-ori for in-plane and out-of-plane
infinitesimal deformation have equal magnitude, but opposite signs. The analytic bending
Poisson’s ratio is derived assuming that there are periodic small deformations of unit cells. For
a large global bending deformation, the unit cells of Miura-ori actually deform non-uniformly
throughout the sheet [26,29]. Therefore, the applicable range of this analytical expression for
the bending Poisson’s ratio is limited. The proposed numerical approach provides a way to
numerically predict the global bending behaviour of Miura-ori under large deformation. Because
the bending Poisson’s ratio is not well-defined for the large deformation case, we instead compute
the coupling ratio of the two principal curvatures of the sheet, i.e. −κx/κy, as shown in figure 11.
For small deformations, this coupling ratio equals the bending Poisson’s ratio as defined in
[29]. We adopt the values of input parameters for the compression test, except reduced bending
stiffness and stretching stiffness (kB

0 = 1 and C0 = 108), in order to represent non-rigid panels.
Boundary conditions are shown in figure 9b,e.

In the bending simulation, the Miura-ori is initially partially folded. The computation takes
about 7 s with �λ= 0.03. The analysis successfully predicts the saddle-shaped deformation of
the Miura-ori. The load-displacement curve is shown in figure 11a. The coupling ratio (−κx/κy) is
interpolated near the centre of the sheet using five nodes on the upper surface as marked with blue
dots in figure 9b. When the deformation is small (at point A), the ratio is close to 1.0, agreeing with
the analytical prediction. As the deformation gets larger, the unit cells deform heterogeneously
and the coupling ratio increases. The obtained deformation shows a qualitatively good agreement
with that of the paper-made model, as demonstrated in figure 11b,c.

(c) Pop-through defect of Miura-ori: bistability
Miura sheets may display a local bistable behaviour. Silverberg et al. [28] named such behaviour
as ‘pop-through defects’, and studied their influence on the mechanical properties of Miura-ori
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structures. Figure 12a shows a regular configuration of Miura-ori, while on the side, figure 12b
shows a Miura-ori with a central unit cell in the ‘pop-through’ state. The ‘pop-through’
state can be achieved by applying a vertical force to a vertex until the unit cell pops into
another mechanically stable state. The soft bending of panels is the main contributor to this
phenomenon [28].

The deformation process that forms a ‘pop-through’ state has not been investigated yet, and
thus it is the subject of this study. We consider a Miura-ori structure with the same geometry as
the previous example presented in §4b. The Ogden-1 material model is used for bar elements.
Other material related parameters are: kF

0 = 0.1, kB
0 = 1, C0 = 1× 108, A= 1× 10−5. We consider

contact of adjacent panels by setting θ1 = 45◦, θ2 = 315◦. The initial state and boundary conditions
are shown in figure 12c. The initial load factor is �λ= 0.06 and the computational time is
approximately 11 s. Figure 13 shows the equilibrium path and different deformations under
various magnitudes of loading. The corresponding configuration at point C is the stable ‘pop-
through’ state when the structure is in self-equilibrium. The numerical simulation approximately
reproduces the formation of the ‘pop-through defect’ of the paper-made model. Under the given
load, the Miura-ori presents a typical curve of bistability with snap-through behaviour [39,46], as
indicated in figure 13.

(d) Multi-stability of the Kresling pattern
The Kresling pattern [50] is a type of cylindrical shell origami that has multi-stable behaviour
[55]. The nodes of the Kresling pattern lie on the intersection of two sets of helices (longitudinal)
and one set of circles (transverse). A commercial company has used the idea of Kresling pattern to
fabricate foldable wine bags as shown in figure 14a, which forms stable structures in both a folded
and deployed state (E.A. Paulino 2015, personal communication). In this example, we look at
the equilibrium path of such multi-stable behaviour using the proposed nonlinear bar-and-hinge
model.

According to Cai et al. [55], the multi-stability of this structure is due to the change of crease
lengths. In other words, the multi-stable behaviour originates from panel stretching, instead of
panel bending as in the previous example. The numerical model has three layers, each modelling
one section of the origami wine bag. We assign kF

0 = 1× 10−3, θ1 = 45◦, θ2 = 315◦ and C0 = 5× 107

as the basic material properties. The Ogden-1 material model is used for bar elements. The folding
stiffness is very small because we observe that the folding creases of the physical model (i.e.
the origami wine bag as shown in figure 14a) are quite soft. The cross-sectional areas of the bar
elements are 10−5. This pattern has only triangular panels and they are not further discretized
in the bar-and-hinge model. Therefore, there are no bending hinges. The boundary conditions
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Figure 12. TheMiura-ori ‘pop-through defect’. (a) The paper-madeMiura-ori model in a regular partially folded configuration.
(b) The Miura-ori model in the ‘pop-through’ state, which is a stable configuration. (c) The numerical model and boundary
conditions for simulation. The angle γ is 112.61◦. Support S1 fixes displacements in x-, y-, z-directions, S2–S6 fix displacements
in x-, z-directions and S7 fixes y-, z-displacements. From S8 to S12, restrictions only apply in the z-direction. Load is applied as
a unit force towards the−z direction on the node marked with blue circle. Displacement� is the z-displacement measured
at the loading node− also marked with a yellow circle. (d) A flattened unit cell of the Miura-ori. We take a= 0.02, b= 0.02
andα= 60◦. (Online version in colour.)

for the simulations are shown in figure 14b. The bottom of the tower is fixed on the ground in
all directions.

The investigation is conducted by applying uniform unit compression forces on the top nodes.
An initial load factor�λ= 0.032 is used. The execution time of the analysis is 4 s. The equilibrium
path shown in figure 14c draws the downward displacement of a top node versus the value of the
load factor. This diagram can be seen as a projection of the multi-dimensional equilibrium path
onto the specific plane of � and λ. It is interesting that the equilibrium path makes a U-turn
at point C, and then traces a path of almost identical projection as the previously passed. In
actuality, however, the two almost overlapping paths refer to completely different deformations,
as illustrated in figure 14c with the insets and figure 14e–g. For example, coincident points B
and D, on the first and second passes, respectively, refer to different stable states of the origami
structure, as shown in figure 14f,g. At point B, the middle layer is fully folded, while at point D,
the middle layer reopens. From the stored energy diagram, we can clearly see that B and D are
two different local minima. The distribution of stored energy verifies that, for such an origami
structure, the non-rigid behaviour comes mostly from the stretching deformation of the panels.

We note here that such multi-stable structures typically have many bifurcation points and
branches on the equilibrium paths; however, the solution solver (MGDCM) would only pick one
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Figure 13. (a) Equilibrium path,� versusλ, during the deformation process of a ‘pop-through defect’ onMiura-ori. The insets
show zoom-in views of the deformed Miura-ori near the central region. Reference of these insets to the global configuration
is illustrated in (b). (b) Several key frames of deformed configurations along the simulation, corresponding to the four points
(A–D) on the equilibriumpath. At stage C, the corresponding configuration is in a stable state, and the digital rendering shows a
similar configuration to the physical model shown in figure 12(b). The yellow dashed circles mark the zoom-in regions for insets
in (a). (Online version in colour.)

of the many branches. The choice of branch that the solver selects depends on many factors,
including the value of the initial load factor �λ. In general, the choice of branching appears to
be arbitrary. Despite this insufficiency of the nonlinear solver, this example indicates that our
nonlinear formulation is able to present the full picture of the deformation spaces of multi-stable
origami structures, because we (at least) captured two equilibrium states other than the initial
configuration in this example. Numerical techniques for bifurcation analysis [41] may allow us to
guide the nonlinear solver to follow a specific branch of the equilibrium paths, which is a possible
improvement of the current nonlinear bar-and-hinge model.

Guest & Pellegrino [31,56,57] investigated (numerically and experimentally) a multi-stable
triangulated cylinder, which has a similar geometry as the Kresling pattern, but whose nodes
are at the intersections of three helices; thus, the transverse edges form helices instead of separate
circles as in the Kresling pattern. In their numerical analysis, they simplified the structure into a
reduced model, following similar simplifications, as in our study. They conducted a displacement-
controlled simulation based on a force method, and found that the contribution of folding hinges
to the global mechanical behaviour is small, which agrees with our observation for the Kresling
pattern. By contrast, our fully nonlinear formulation uses a highly nonlinear constitutive model
of rotational springs to prevent the local intersection of panels, while they handled this issue
by adding extra constraints to the system of equations. These extra constraints eliminate the
possibility of spring-back of the folded region, which is likely to occur in practice, and is captured
in our simulations.
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Figure 14. The multi-stable Kresling origami tower. (a) An origami wine bag that has the shape of the Kresling pattern with
eight sides. (b) Geometry and boundary conditions of the numerical model. Each layer of the tower has a height of h= 0.05.
On each layer, the cross-sectional outline, which is a regular octagon, is placed inside a circle of radius r= 0.05. Supports are
indicated by red triangles, all of which restrict displacement in the x-, y-, z-directions. Unit forces are applied at nodes circled
in blue to the−z direction. Displacement� is measured as the z-displacement of the node marked with a yellow circle. (c)
Equilibrium path,� versusλ. The insets illustrate the global deformation of the origami at different points on the equilibrium
path. At point C, we can see that the top and middle layer have an equal chance to collapse, thus C refers to a bifurcation point.
(d) Stored energy profile along the simulation process. States A, B and D refer to three local minima on the profile. Energy
contributions from stretching deformation and folding deformation are distinguished by different colours. There is no bending
deformation considered in this simulation. (e, g) Stable configurations along the path (at points A, B and D) are demonstrated
using side views. We present both key frames from the numerical simulation and corresponding physical model configurations.
(Online version in colour.)

5. Conclusion
This paper presents a nonlinear formulation for simulating large displacements and deformations
of origami structures, based on the bar-and-hinge model, which is a reduced degree-of-freedom
model of origami as pin-jointed bar networks with virtual rotational springs. We hence achieve
a computationally efficient approach for understanding the nonlinear mechanics of origami
structures when panel deformations are taken into account. Numerical simulations show that
the formulation is able to capture key features of origami deformations on a global scale, such
as folding kinematics, bending curvatures and multi-stability. Its simplicity and efficiency allows
quick investigations of non-rigid origami structures when the global deformation is of primary
interest.
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When comparing both bar-and-hinge and shell element-based FE models, we note that their
simplifications are made at different levels: the bar-and-hinge model is a conceptual simplification
of the structural model, while the FE attempts to model the actual structural system while
introducing most simplifications at the formulation level. In this context, the bar-and-hinge model
is inherently discrete, while the shell element-based FE approaches are continuum-based (cf.
[16–19]). As a result, the discrete bar-and-hinge model provides a simpler representation of the
actual origami structure than continuous shell elements. For example, it can provide a simpler
origami model than those of FE shell models for a system of several components (e.g. facets, joints)
made with different materials. In essence, our present bar-and-hinge model provides insight
into the nonlinear behaviour of origami structures, and allows highly efficient and effective
simulations. It approximates the global behaviour of origami structures, but cannot provide
high-resolution minutia of local origami deformations.

The generality of the nonlinear bar-and-hinge structural analysis formulation offers space
for further improvement. The constitutive relationships of the bars and rotational springs can
be designed to better reflect the physical behaviours of specific origami structures. In addition,
because the formulation is compatible with arbitrary bar-and-hinge models, the discretization
scheme can be improved. Currently, the adopted discretization scheme is only applicable to
origami sheets with triangular and quadrilateral panels. Refined triangulation schemes may
be used to improve accuracy and to enable the analysis of origami structures with arbitrary
polygonal panels. Furthermore, global contact of the sheets may also be considered.
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Appendix A. Geometric terms of rotational spring elements
To accomplish the simplification from equations (2.29)–(2.32) to equations (2.33)–(2.36), the
following vector identity will be used frequently:

a× (b× c)= (a · c)b− (a · b)c. (A 1)

Following the procedure as described in [43], let us first simplify equation (2.29) as follows:

∂θ

∂x(r)
i

= −1
sin(θ )

rkj ×
‖m‖2n− (m · n)m
‖m‖3‖n‖ ,

= −1
sin(θ )

rkj ×
(

m× (n×m)
‖m‖3‖n‖

)
,

= −1
sin(θ )

rkj ×
(

m× (− sin(θ )‖m‖‖n‖rkj)

‖rkj‖‖m‖3‖n‖

)
,

= rkj ×m× rkj

‖rkj‖‖m‖2
,

= ‖rkj‖
‖m‖2 m. (A 2)
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Because equation (2.30) has the same structure as (2.29), following the same procedure,
equation (2.30) can be simplified to equation (2.34). Starting with equation (2.31) and using
equation (2.29), we can obtain equation (2.35) by the following transformations:

∂θ

∂x(r)
j

= −1
sin(θ )

(
(rij − rkj)×

‖m‖2n− (m · n)m
‖m‖3‖n‖ − rk� ×

‖n‖2m− (n ·m)n
‖n‖3‖m‖

)
,

= −1
sin(θ )

(
rij ×

m× (n×m)
‖m‖3‖n‖ − rk� ×

n× (m× n)
‖n‖3‖m‖

)
− ∂θ

∂x(r)
i

,

=− rij ×m× (−rkj)

‖rkj‖‖m‖2
+ rk� × n× rkj

‖rkj‖‖n‖2
− ∂θ

∂x(r)
i

,

= (rij · rkj)m

‖rkj‖‖m‖2
+ (rk� · rkj)n

‖rkj‖‖n‖2
− ∂θ

∂x(r)
i

,

=
(

rij · rkj

‖rkj‖2
− 1

)
∂θ

∂x(r)
i

− rk� · rkj

‖rkj‖2
∂θ

∂x(r)
�

. (A 3)

Similarly, equation (2.32) has the same structure as (2.31), thus equation (2.36) can be simplified
from equation (2.32).

Next, we will elaborate on the Hessian of rotation angles. The Hessian matrix appears in the
stiffness matrices of rotational spring elements. The Hessian contains 16 blocks of submatrices
(of size 3× 3), among which there are 10 independent blocks due to symmetry. For clarity, let us
define

A= rij · rkj

‖rkj‖2
and B= rk� · rkj

‖rkj‖2
. (A 4)

Therefore, we obtain the following relationships:

∂A

∂x(r)
j

= 1
‖rkj‖2

((2A− 1)rkj − rij), (A 5)

∂B

∂x(r)
j

= 1
‖rkj‖2

(2Brkj − rk�), (A 6)

∂A

∂x(r)
k

= 1
‖rkj‖2

(−2Arkj + rij) (A 7)

and
∂B

∂x(r)
k

= 1
‖rkj‖2

((1− 2B)rkj + rk�). (A 8)

In addition, let us define the operator ‘�’ as

a � b := a⊗ b+ b⊗ a, ∀a, b ∈R
3. (A 9)

Note that a � b results in a symmetric matrix. Then, the 10 independent blocks of the Hessian
matrix of the rotation angle with respect to the nodal coordinates are expressed as

∂2θ

∂(x(r)
i )2
=− ‖rkj‖
‖m‖4 (m � (rkj ×m)), (A 10)

∂2θ

∂(x(r)
� )2
= ‖rkj‖
‖n‖4 (n � (rkj × n)), (A 11)
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∂2θ

∂x(r)
i x(r)

k

= m⊗ rkj

‖m‖2‖rkj‖
+ ‖rkj‖
‖m‖4 (m � (rij ×m)), (A 12)

∂2θ

∂x(r)
� x(r)

j

= n⊗ rkj

‖n‖2‖rkj‖
− ‖rkj‖
‖n‖4 (n � (rk� × n)), (A 13)

∂2θ

∂x(r)
i x(r)

j

=− m⊗ rkj

‖m‖2‖rkj‖
+ ‖rkj‖
‖m‖4 (m � ((rkj − rij)×m)), (A 14)

∂2θ

∂x(r)
� x(r)

k

=− n⊗ rkj

‖n‖2‖rkj‖
− ‖rkj‖
‖n‖4 (n � ((rkj − rk�)× n)), (A 15)

∂2θ

(∂x(r)
j )2
= ∂θ

∂x(r)
i

⊗ ∂A

∂x(r)
j

+ (A− 1)
∂2θ

∂x(r)
i x(r)

j

−
⎛
⎝ ∂θ

∂x(r)
�

⊗ ∂B

∂x(r)
j

+ B
∂2θ

∂x(r)
� x(r)

j

⎞
⎠ , (A 16)

∂2θ

∂x(r)
j ∂x(r)

k

= ∂θ

∂x(r)
i

⊗ ∂A

∂x(r)
k

+ (A− 1)
∂2θ

∂x(r)
i x(r)

k

−
(
∂θ

∂x(r)
�

⊗ ∂B

∂x(r)
k

+ B
∂2θ

∂x(r)
� x(r)

k

)
, (A 17)

∂2θ

(∂x(r)
k )2
= ∂θ

∂x(r)
�

⊗ ∂B

∂x(r)
k

+ (B− 1)
∂2θ

∂x(r)
� x(r)

k

−
(
∂θ

∂x(r)
i

⊗ ∂A

∂x(r)
k

+ A
∂2θ

∂x(r)
i x(r)

k

)
(A 18)

and
∂2θ

∂x(r)
� x(r)

i

= 03×3. (A 19)

The symbol 03×3 means a 3× 3 zero matrix. Owing to symmetry, the other 6 blocks of the Hessian
matrix can be completed with the following identities:

∂2θ

∂x(r)
k x(r)

i

=
(

∂2θ

∂x(r)
i x(r)

k

)T

,
∂2θ

∂x(r)
j x(r)

�

=
⎛
⎝ ∂2θ

∂x(r)
� x(r)

j

⎞
⎠

T

,

∂2θ

∂x(r)
j x(r)

i

=
⎛
⎝ ∂2θ

∂x(r)
i x(r)

j

⎞
⎠

T

,
∂2θ

∂x(r)
k x(r)

j

=
⎛
⎝ ∂2θ

∂x(r)
j x(r)

k

⎞
⎠

T

and
∂2θ

∂x(r)
i x(r)

�

=
(

∂2θ

∂x(r)
� x(r)

i

)T

,
∂2θ

∂x(r)
k x(r)

�

=
(

∂2θ

∂x(r)
� x(r)

k

)T

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 20)

The terms shown above are not completely simplified, but they are sufficient for numerical
computation as they are free of any singularities.

Appendix B. Verification using finite differences
The correctness of the derived terms are verified by the FD method. We take an example of a
single rotational spring element (whose geometry is the same as in §4a). Let θ rotate from 0 to 2π .
We adopt the central difference formula [44] with a step size of δθ = 10−6. In the approximation
of the gradient ∇θ , the dihedral angles are computed using equation (2.27). In the approximation
of the Hessian matrix H, the gradient is computed using equations (2.33)–(2.36). The entries of
the gradient vector and Hessian matrix are approximated one by one. We define the following
measures of differences:

�g =max
i
|(∇θ )i − (∇θ )FD

i | (B 1)

and

�H =max
i,j
|Hij −HFD

ij |, (B 2)
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Figure 15. The difference between the analytical expressions and FD approximations versus the rotation angle θ (in degree)
for a single rotational spring element—see §4a and figure 7. (Online version in colour.)

where a quantity with superscript FD indicates that it is computed using the finite difference
approximation; otherwise, it is computed using the derived analytical formula. The differences
are plotted in figure 15 with respect to the dihedral angle θ . Note that due to the ill-conditioning of
the inverse cosine function near θ = 0 and π [44], the FD approximations for the gradient become
inaccurate near those angles. As a consequence, we find a comparably larger difference between
the analytical value and the FD approximation for the gradient near 0 and π than for other angles.
In general, the two approaches yield almost identical results for both the gradient and the Hessian,
which verifies the correctness of the analytical derivations.

Appendix C. Nomenclature
E Green-Lagrange strain tensor
m, n panel normals
rpq vector from node q to p
S second Piola-Kirchhoff stress tensor
�ûi

k, �ǔi
k intermediate displacement increments

�λi
k load factor increment at iteration k of increment i

�L(r) change of the axis length
� displacement measure
�g, �h difference between analytical expressions and FD approximations
η sign indicator
κ1, κ2 principal curvatures
λ load factor
λi

k load factor at iteration k of increment i
λi principal stretch along direction i
03×3 3× 3 zero matrix
B1, B2 compatibility vector and matrix
e1 unit vector [1 0 0]T

 on October 11, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


26

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20170348

...................................................

F applied forces
H hessian of rotational angle with respect to nodal positions
I3×3 3-by-3 identity matrix
K(e)

bar elemental tangent stiffness matrix of a bar element

K(r)
spr elemental tangent stiffness matrix of a rotational spring element

R residual force vector
T(e)

bar internal force vector of a bar element

T(r)
spr Internal force vector of a rotational spring element

u(i) nodal displacements
v admissible virtual displacement
X undeformed configuration
x deformed configuration
μ, α, N Ogden material model parameters
∇θ gradient of rotational angle with respect to nodal positions
νLW tangential Poisson’s ratio
�λ initial load factor
Π total potential energy
ψ strain energy function of rotational springs
θ relative rotation angle between two adjacent triangles
A(i) undeformed cross-sectional area of bar i
C, C0 one dimensional tangent modulus and its initial value
i, j, k, � nodal indices
k tangent rotational stiffness
k0, θ1, θ2 parameters for the constitutive model of rotational springs
kF

0 , kB
0 folding stiffness and bending stiffness at neutral state, respectively

L, W global length and width of a Miura-ori (deformed)
L(i) undeformed length of bar i
L(r) undeformed length of a rotational hinge (axis)
Linitial initial length of the partially folded Miura-ori
Lunfold length of the flat Miura-ori pattern
M rotational resistance moment
Na, Nb linear shape functions of a bar element
Ubar stored energy in bars
Uspr stored energy in rotational springs
Vext work done by external force
W strain energy density function of bars
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