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Abstract
This paper presents an optimization approach for design of tensegrity structures based on graph theory. The formulation
obtains tensegrities from ground structures, through force maximization using mixed integer linear programming. The
method seeks a topology of the tensegrity that is within a given geometry, which provides insight into the tensegrity design
from a geometric point of view. Although not explicitly enforced, the tensegrities obtained using this approach tend to be
both stable and symmetric. Borrowing ideas from computer graphics, we allow “restriction zones” (i.e., passive regions
in which no geometric entity should intersect) to be specified in the underlying ground structure. Such feature allows the
design of tensegrities for actual engineering applications, such as robotics, in which the volume of the payload needs to be
protected. To demonstrate the effectiveness of our proposed design method, we show that it is effective at extracting both
well-known tensegrities and new tensegrities from the ground structure network, some of which are prototyped with the aid
of additive manufacturing.

Keywords Tensegrity · Form-finding · Ground structure · Topology optimization · Graph theory · Additive manufacturing

1 Introduction

Snelson (2012) referred to tensegrity as the art of “floating
compression structures.” According to Fuller (1962), the
word tensegrity is a contraction of the words “tensile” and
“integrity,” which refers to a continuous network of tension.
However, historically, tensegrity has not been given a unique
technical definition (Motro 2006; Skelton and de Oliveira
2009). Although the tensegrity concept is ubiquitous, the
actual word is interpreted differently across fields, such as
architecture, engineering, art, mathematics, and biology.

In the most general definition, the term “tensegrity”
encompasses any prestressed structural system that has con-
tinuous tensile component, like membranes. For example, in
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biology, Ingber (1998) interpreted tensegrity as the funda-
mental structure of all living creatures with the distinctive
characteristic of being prestressed and having a continu-
ous tensile component, such as the cytoskeleton of cells.
Classic tensegrities like the sculptures by Heartney and
Snelson (2009), align with the definition by Motro (2006):
“A tensegrity system is a system in a stable self-equilibrated
state comprising a discontinuous set of compressed compo-
nents inside a continuum of tensioned components.” Other
definitions can also be found (see Connelly and White-
ley 1996). Some might insist that a tensegrity must also have
infinitesimal mechanisms. However, in this work, kinematic
indeterminacy is not a particular feature of interest (see last
paragraph of Section 3.1). The structures that we design fol-
low the definitions by researchers such as Motro (2006),
Zhang and Ohsaki (2015), and Skelton and de Oliveira
(2009). Since we only consider rectilinear members, our
designed structures can also be called “strut-tendon” struc-
tures, as introduced by Hanaor (2012). In addition, we adopt
the classification of tensegrity according to Skelton and de
Oliveira (2009) and Williamson and Skelton (2003) in order
to generalize the concept of tensegrity by relaxing the dis-
continuity constraint regarding struts. The Class definition
sets an upper bound to the number of compressive members
(i.e., struts) that can connect at each node of the tensegrity.
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For example, the iconic “Needle Tower” shown in Fig. 1a
is a Class-1 tensegrity, for which the struts are all isolated.
As an example of a Class-2 tensegrity, we cite the work by
Moored et al. (2011), who designed an active robotic fin for
underwater locomotion. For further details about the history
and definitions of tensegrity, the readers are referred to the
book by Motro (2006).

Tensegrity has shown significant potential for engineer-
ing applications (Schenk et al. 2007). The idea has been
used to make structures that are deployable, actively tun-
able, and light weight (Caluwaerts et al. 2014; Motro 2006;
Schenk et al. 2007; Sultan 1999; Tibert 2002; Rhode-
Barbarigos 2012; Hanaor and Liao 1991; Pellegrino 1992;
Liu et al. 2017). Moreover, tensegrity properties have also
been explored to design novel lattice materials that could
reach superior strength-to-weight ratio (Rimoli and Pal
2016). Because design of new tensegrities for specific appli-
cations is challenging, most applications rely on existing
tensegrity forms. Thus, the aim of our work is to provide
a method that allows the creation of tensegrity designs by
means of topology optimization.

Some analytical and numerical approaches have been
proposed in the literature for form-finding of tensegrity.
The design of a tensegrity has two main aspects: the
topology and the geometry. We can classify the form-finding
methods into two categories: topology design methods and
geometry design methods. The distinction is based on the
way to achieve self-equilibrium of the structure during the
design: by adjusting either the topology or the geometry.
For a typical geometry design method, the topology of
the tensegrity is first defined; then, the geometry evolves
to achieve self-equilibrium (Li et al. 2010a; Tachi 2013;
Zhang and Ohsaki 2006; Ohsaki and Zhang 2015; Lee
and Lee 2016). Most numerical form-finding approaches
fall into this category. On the contrary, for a topology

design method, the geometry is specified a priori, while
the topology evolves to ensure self-equilibrium (Ehara and
Kanno 2010; Kanno 2012, 2013a, b; Xu et al. 2016). The
two categories are not mutually exclusive. A method can
belong to both categories, for example, design by intuition.
A detailed review of form-finding methods is presented in
Section 2.

Here, we propose a numerical approach for the design of
tensegrity in the category of the “topology design method.”
We perform a mixed integer linear programming (MILP)
on ground structures to extract the tensegrity design. The
ground structure method has been used in the field of
(structural) topology optimization for a long time (Dorn
et al. 1964; Smith 1998; Zegard and Paulino 2015).
It provides a very dense set of potential members and
joints from which the desired structure can be extracted
through the optimization process. In topology optimization
of tensegrity, the method selects members from the
ground structure and finds the associated self-equilibrating
prestress forces. All joints have fixed coordinates during the
optimization; thus, the geometry of the tensegrity is fixed,
featuring a prescribed geometry.

The impact of this research stands out by two main
concepts: the development of a new tensegrity form-
finding formulation, which yields effective design of
tensegrities with fixed geometry, and the extension to
use arbitrary shapes as the building blocks, with the
possibility of concave geometric constraints such as holes
and openings. The proposed formulation is relatively
simple and computationally efficient compared to similar
formulations (Ehara and Kanno 2010; Kanno 2012, 2013a,
b; Xu et al. 2016), and often converges to symmetric and
stable structures. An overview of tensegrity form-finding
methods is provided in Section 2, while the actual
topology optimization formulation, rooted on graph theory,

Fig. 1 Applications of tensegrity structures. a The outdoor sculpture
“Needle Tower” created by Kenneth Snelson (1968) (Heartney and
Snelson 2009) (image courtesy of Kenneth Snelson.) b Tensegrity
robot design investigated by NASA (Caluwaerts et al. 2014) for outer

space missions (adapted from Caluwaerts et al. 2014.) c A baby play-
ing with a tensegrity toy (image reproduced from Manhattan 2018.
©2018 Manhattan Toy)
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is presented in detail in Section 3. Borrowing from the
techniques that we have previously developed on the
generation of complex three-dimensional ground structures
(Zegard and Paulino 2015), we can impose different
passive zones in the ground structure, which are useful
for designing tensegrities aimed at actual engineering
applications. For example, in the design of tensegrity for
outer space exploration (Caluwaerts et al. 2014), some
interior spaces need to be reserved for payloads. Combining
these new features, the present formulation is able to
reproduce many of the known forms of tensegrity, as
verified in Section 4 and Appendix 1. With the confidence
provided by the verification study, we use our method to
discover and design new tensegrity structures, as shown in
Sections 4 and 5. Section 6 presents a discussion of the
numerical aspects of the work. Some of the designs are
prototyped with physical models, using a simple procedure,
aided by 3D printing technology, which is elaborated in
Section 7. Four appendices complement the present work,
which include reproducing known tensegrities, illustrating
topological constraints by means of an example, describing
basic structural analysis of tensegrities, and providing the
Nomenclature adopted in the present work.

2 Overview of form-findingmethods

In this section, we cast the forming-finding problem of
tensegrity in a generic form and discuss how different
methods fit into the framework. As a kind of prestressed
discrete structure connected by joints, the configuration of a
tensegrity is totally defined by the following components:

(1) Topology, which can be described using a graph G

(2) Geometry, which is defined by the coordinates p of the
nodes

(3) Self-equilibrium state, which contains the self-
equilibrating prestress forces in the members (stored
in a vector F)

The topology of such structures can be described using a
graph G, which contains a set of vertices V and edges E,
where edges reflect the pairing of vertices. The vertices of
the graph can be interpreted as the indexing of the nodes of
a tensegrity structure, and the edges represent the members.
The geometry of a tensegrity is a map that assigns each
vertex in the graph with a coordinate in the Euclidean space
R

d of dimension d. In this paper, we restrict our scope to
d = 3. The geometry can be represented by p, a 3NV × 1
vector that stores the (x, y, z) coordinates of each node
sequentially. Furthermore, an associated self-equilibrium
state is essential for a tensegrity structure by definition.
The self-equilibrating state is sustained by a set of forces
attached to each member of the structure, such that struts are
in compression and cables are in tension.

The form-finding of tensegrity structures consists of find-
ing a graph with associated geometry over the vertices and
self-equilibrating forces over the edges. In general, a form-
finding problem of tensegrity can be expressed as follows:

Find: G, p, F (1a)

such that: B(p, G)F = 0 (1b)

T (G) � n (1c)

uTKu > 0,

for any nontrivial displacementu (1d)

The equilibrium matrix B is determined by p and G

(see Appendix 3 for its derivation). The prestress forces F
should self-equilibrate the tensegrity, as stated in condition
(1b). The term K is the tangent stiffness matrix of the
tensegrity which depends on the topology G, geometry p,
and prestress forces F, as well as member properties such
as cross-sectional areas and material properties. Condition
(1c) is a topological constraint which restricts the number
of compressive members that can meet at each vertex.
For Class-1 tensegrity, n = 1, that is, the compressive
members are all disconnected (i.e. floating). In order to
ensure that the tensegrity structure is free-standing, we
also need to examine its stability. Condition (1d) is the
stability requirement stating that the quadratic form of the
tangent stiffness matrix with respect to any small nontrivial
displacement of nodes is positive, which, in addition to
the equilibrium constraint, implies that the total potential
energy of the structure at its initial state is at a strict local
minimum. The infinitesimal displacement of nodes, i.e., u,
is trivial if it represents a rigid-body motion or if it is a zero
vector. It is equivalent to say that K is positive definite after
constraining the rigid-body motions. Assuming the elastic
structure undergoes very small deformations, the tangent
stiffness matrix is composed of a linear stiffness matrix KE

and a geometrical stiffness matrix KG (Guest 2006, 2011;
Zhang and Ohsaki 2015). In this paper, because we assume
that the strains in members are small, including prestrains
(i.e., initial deformations) induced by the prestress, then it
is sufficient to construct only the so-called stress matrix
(Connelly 1999) as an approximation to the complete
geometric stiffness matrix (Guest 2006, 2011; Schenk et al.
2007). A brief derivation is presented in Appendix 3.

The aforementioned stability condition is the minimum
potential energy stability. However, the tangent stiffness matrix
requires information about member properties, which can
be cumbersome for preliminary studies (Zhang and Ohsaki
2015). There are two other criteria that are usually used
in the study of stability of tensegrities, namely, prestress
stability and super-stability. Assume the rigid-body motions
are already properly restricted for a tensegrity. Prestress
stability requires that the quadratic form uT

MKGuM be
positive, for all uM ∈ {u : BTu = 0, u �= 0}. The
transpose of the equilibrium matrix is the compatibility
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matrix (Guest 2006). A special case of prestress stability
is when the compatibility matrix has full row rank, which
indicates there is no uM , and such a tensegrity is said
to be infinitesimally rigid (Connelly and Whiteley 1996).
We clarify here that uM preserves the lengths of all
members, however, in an actual tensegrity, the cables can
be shortened (i.e., slacked). When a tensegrity is said
to be kinematically determinate, it actually means that
the dual truss structure (if we replace all the members
in a tensegrity with bars) that has the same geometry
and topology is kinematically determinate. Notice that a
kinematically determinate tensegrity is not equivalent to
a kinematically determinate truss. An infinitesimally rigid
truss is structurally stable; however, an infinitesimally rigid
tensegrity may or may not be structurally stable without
prestress because of slackness of cables. As proved by
Connelly and Whiteley (1996), an infinitesimally rigid
tensegrity is only guaranteed to be stable with the presence
of prestress. In addition to the prestress stability, if the
geometrical stiffness matrix KG (or the stress matrix in the
current context) is positive semi-definite with maximal rank
that equals to 3NV − d(d + 1) (Connelly 1999; Schenk
et al. 2007), then the structure is super-stable. In general,
super-stability ensures minimum potential energy stability
of the structure; however, a high level of prestress can make
a super-stable tensegrity unstable owing to the significant
initial deformations induced by prestress (Guest 2011).
Therefore, in this paper, we assume that the prestrains
of members are small. Super-stability is usually preferred
because prestress stability is only a necessary condition for
a stable structure (Zhang and Ohsaki 2015). In many form-
finding approaches, conditions (1b) and (1c) are the basic
constraints, while condition (1d) may not be considered at
first since it complicates the form-finding process. It is usually
checked a posteriori, i.e., after the design is obtained.

The tensegrity design problem has been solved using intu-
ition, analytical methods, and numerical methods. Analyti-
cal and intuitive methods of form-finding seek the topology
and geometry simultaneously (Connelly 1995). Only a small
number of known solutions have been obtained analytically
or based on intuition, and application of these solutions is
limited due to the small number of known configurations.
Numerical form-finding methods are usually done by first
fixing either the topology or the geometry, and then find-
ing the other to achieve self-equilibrium. Geometry design
methods fix the topology and search for the geometry of
a tensegrity as well as the corresponding self-equilibrium
state. Examples of geometry design methods are adap-
tive force density method (Zhang and Ohsaki 2006), free-
forming method (Tachi 2013), dynamic relaxation method
(Zhang et al. 2006), and Monte Carlo form-finding method
(Li et al. 2010b). Because one topology can have many

geometries that are associated with a set of self-equilibrating
forces, the obtained geometry always has some arbitrari-
ness. The initial assignment of the topology is also tricky.
Typically, it is based on heuristic rules evolved from pla-
nar diagrams (Li et al. 2010a; Tachi 2013). Thus, if such
methods are used to generate tensegrities with many mem-
bers occupying a large space, a common characteristic
of the final result is that the connectivities are local and
the obtained geometries become hollow (i.e. no members
crossing the internal space).

Topology design methods, which fix the geometry of the
tensegrity and search for the topology and the underlying
self-equilibrium state, have only emerged in recent years
(Ehara and Kanno 2010; Kanno 2012, 2013a, b; Xu et al.
2016). A ground structure is used to provide the candidate
members for the self-equilibrating forces to attach to, and
the topology of the tensegrity is determined as a conse-
quence. A typical drawback of such methods is that, due to
the discrete nature of the topology, the problem is usually
difficult to solve. However, the advantage is that one does
not need to prescribe the topology, which is hard to guess
at an initial design stage. Ehara and Kanno (2010) proposed
a two-step mixed integer linear programming (MILP) for-
mulation, in which they first maximize the number of struts
and then minimize the number of cables. Kanno (2012,
2013a, b) explored other one-step formulations with various
objective functions and constraints, for example, minimiza-
tion of total length of cables, minimization of compliance
under some external loads, implicit symmetry constraint,
kinematic indeterminacy constraint, and contact constraint.
In this paper, we propose a different objective function
defined solely on the continuous variables in the MILP,
which implicitly promotes stability and symmetry of the
optimized design.

3 Topology optimization formulation

The proposed form-finding formulation is an optimization
approach based on the ground structure method. The
formulation does not enforce the stability of the tensegrity,
but we will see that the method is prone to converge to
a stable tensegrity. The obtained designs also inherit the
symmetries possessed by the initial ground structures.

3.1 Formulation

Denote Gg as the graph that represents the topology of the
ground structure. Its vertices Vg and edges Eg are the sets
of all nodes and members, respectively. The force vector
F contains the forces in members (i.e., Eg), which are
the design variables. Any nonzero entry in the solution
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implies the existence of a corresponding member. A force
attached to member e with Fe < 0 is a compressive force.
The proposed form-finding method takes the following
mathematical form:

max
F

1TF (2a)

s.t. BF = 0 (2b)∑

e∼v

χ(Fe) � n, ∀v ∈ Vg (2c)

−1 � Fe, ∀e ∈ Eg (2d)

with: χ(Fe) =
{

1, Fe < 0
0, Fe � 0

(2e)

The indicator function χ is a binary operator that
indicates the presence of struts, as stated in (2e). The
notation e ∼ v denotes that the edge e is incident on vertex
v. In other words, member e is connected to vertex v. Thus,
the second constraint in (2c) enforces the discontinuity
of struts. The compressive forces are constrained with a
maximal magnitude in (2d), as the null space of B is
unbounded. Physically, for a finite self-stressed discrete
structure, the entries of a nontrivial F cannot be all positive
or all negative—thus, it is enough to impose only the
constraint (2d) on the magnitude of compression forces to
ensure that the feasible domain is bounded. Members in the
ground structure that are not attached with any force are
excluded from the optimized structure.

The trivial solution F = 0 is always feasible and any
nonzero feasible solution makes a tensegrity if neglect-
ing the stability requirement. To find a desired solution
to this under-determined system, an additional criterion
is necessary. Here, we choose to maximize the sum of
forces in the structure, that is, the difference between total
tension and compression. Intuitively, this objective will
prompt structures that span the maximal space bounded
by the ground structure such that we avoid trivial solu-
tions. Based on observation, the objective function seems
to favor a larger number of struts. A heuristic explana-
tion is given as follows. To maintain equilibrium, when the
total compression in the structure increases, the total ten-
sion should increase accordingly, but usually at a faster rate
(based on observation). Therefore, the difference between
the sum of absolute tension and the sum of absolute com-
pression, which is our objective function, tends to increase
as the total compression increases. As the compressive
force in each member is bounded, a larger number of com-
pressive members are favored, possibly providing a higher
sum of the compressive forces.

In addition to avoiding trivial solutions, the proposed
objective leads to tensegrities with two other desirable
properties. First, the objective tends to generate tensegrity
structures that are stiff and stable. Note that as the difference
between total tension and total compression is maximized,

the ratio of total compression to total tension is minimized.
This ratio can be regarded as a measure for the average angle
between struts and cables, as illustrated in Fig. 2. When
the ratio of total compression to total tension is smaller, the
average angle between struts and cables is larger (i.e., closer
to orthogonal). From a structural engineering point of view,
each strut is provided with more efficient bracing by the
cables that will help to stabilize the prestressed structures.
An example from daily life is the bicycle wheel, in which the
compressive forces are almost orthogonal to tensile forces.

Furthermore, the formulation encourages convergence to
a structure that preserves some symmetries of the prescribed
ground structure. Suppose that we have a symmetric ground
structure Gg associated with a non-degeneratable symmetry
group H that contains some transformations hi ∈ H . Each
transformation hi of nodes and members of the ground
structure is a symmetry operation under which the structure
is unchanged (Guest 2000; Zhang et al. 2009; Zhang and
Ohsaki 2015).

Because this problem is a discrete programming prob-
lem, which is complicated, we first look at a relaxed version
of formulation (3.1) to check the symmetry preserving prop-
erty of the optimal solution to this force maximization
problem. Note that by increasing the integer n in constraint
(2c), the topological constraint becomes inactive and we
achieve a linear programming (LP) problem. We first show
that when the topological constraint is inactive, the opti-
mal solution of the resultant LP problem could preserve
all symmetries of the initial ground structure. Let F be a
feasible solution of the LP problem that satisfies all the con-
straints. Since the objective function pushes more tension
than compression, we can consider only F’s with 1TF � 0.
If 1TF � 0, we can simply multiply F by a factor of −1.
Let G represent the topology of the structure indicated by
F. There exists a scalar ξ � 1, such that:

min(ξF) = min
i

(ξFi) = −1. (3)

Clearly, ξF is a feasible solution, and it yields maximal
objective on topology G along direction F. Associated with
G, suppose there is a non-degenerate symmetry group K

that is a subgroup of H , with symmetry operations ki ∈ K ,
such that ki(G) = G. If K is not equal to H , we can
construct a new solution:

F′ = F/(m+1)+
m∑

j=1

hj (F)/(m+1), with hj ∈ H,hj /∈ K .

(4)

The number m counts the number of symmetry operations
hj as defined in (4). By applying a transformation hj (/∈ K)
to G, we obtain a structure represented by hj (G), which
is a different subset of Gg , as demonstrated in Fig. 3.
Denote G′ as the graph representing the topology of new
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4

Fig. 2 Preference of larger angle between struts and cables by the
objective function. a A vertex in the ground structure connecting one
member that has already been selected to be a strut (shown with a solid
line) and four candidate cable members (shown with dashed lines). For
a given compression load in the strut, if cables 3 and 4 are selected

as in b, the sum of tension and the average angle between struts and
cables are small. If cables 1 and 2 are selected as in c, the sum of ten-
sion and the average angle between struts and cables are large, which
is preferred according to the objective function

solution F′, which is a union of the original graph G and its
symmetric images (i.e., hj (G)). Thus, the new associated
symmetry group (K ′) of G′ expands to the same as H . Now,
the new solution is clearly feasible, and min(ξF) � −1,
which means that the new solution might be able to be
further maximized by a scalar ξ > 1 on G′. Therefore, we
conclude that there is always a solution of full symmetry
preserved from the input ground structure with larger or
equal objective than any solution with less or no symmetry.
The value of ξ depends on how much the compression field
of the original solution overlaps with that of its symmetric
images (under hj ’s). If there is no overlapping compression
field, then ξ = (m + 1). The level of overlapping is closely
related to the symmetry number of the solution: a general
observation is that the smaller the symmetry number is, the
less overlapping. Thus, a solution with less symmetry is
likely to have objective value much smaller than the possible
optimum (with full symmetry) because ξ can be larger. In
other words, for a force maximization problem, a solution
with more symmetry is likely to yield a larger objective than
the ones with less or no symmetry.

The above discussion about the relaxed LP problem helps
us to gain some insights into the original discrete problem.
As the topological constraint becomes active, the feasible
domain of the new problem reduces to some discrete rays
within the feasible cone of the relaxed LP problem. Each

of these rays represents a specific topology with a scalable
self-equilibrating prestress field that satisfies the discontinu-
ity constraint of struts. In other words, the feasible domain
of the discrete optimization problem is a subdomain of that
of the relaxed continuous problem. As we discussed in pre-
vious paragraphs, symmetric designs yield larger objective
functions in the relaxed continuous design space. Because
adding a topological constraint does not change the underly-
ing mechanics, performing force maximization on a subset
(i.e., the discrete feasible domain) of the relaxed feasible
domain should have the same feature: if we sweep the
discrete feasible domain to the increasing direction of the
objective function, we conjecture that a symmetric solu-
tion is still likely to yield a larger objective. However, as
we foresee, it is almost impossible that the optimal solu-
tion to the discrete problem would inherit all symmetries
of the input ground structure. Indeed, as we observe from
the numerical examples, an optimized tensegrity structure
may possess many symmetries if the input ground structure
is highly symmetric, but the symmetry number is usually
smaller than that of the ground structure. That is to say, it
is possible to obtain asymmetric solutions from symmetric
ground structures.

We note here that our formulation is not concerned about
finding tensegrities with a kinematically indeterminate dual
truss. If mechanical performance is the preferred metric

(a) (b) (c) (d)

Fig. 3 a A symmetric planar ground structure. b A subset of the
ground structure (representation of G) indicated by black solid lines.
c Another subset of the ground structure (representation of hj (G))
obtained by applying a symmetry operation of the ground structure to

the one shown in b. The structures in b and c are physically equivalent,
as the relative relationships between the nodes and members remain
unchanged. d An embedded structure that has the same symmetry
group as the initial ground structure
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over aesthetics, then kinematic indeterminacy is not a good
choice of constraint in the design problem because it offers
no benefits for stiffness and stability of the structure. This
discussion also aligns with the last paragraph of Calladine’s
landmark paper (Calladine 1978): “On the other hand, if the
aim is to design economical but stiff engineering structures
it is not clear that there is much point in making the outer
network so sparse that the resulting frame has a number
of infinitesimal modes whose stiffness is necessarily low.”
Our method is able to produce tensegrity structures that are
kinematically indeterminate as reported by the kinematic
indeterminacy count in the manuscript. We show that
kinematic indeterminacy can be obtained by fine tuning
the geometry of the ground structure (see the example in
Section 4.1).

3.2 Mixed integer linear programming
reformulation

In the aforementioned formulation (2a), the force vector
F is unrestricted in sign. By splitting the force vector
into two non-negative vectors and adding integer variables,
the above formulation can be transformed equivalently to
the following mixed integer linear programming (MILP)
problem:

max
t,c,s

1T(t − c) (5a)

s.t. B(t − c) = 0 (5b)

Gs � n (5c)

0 � t (5d)

0 � c � s � 1 (5e)

s ∈ Z
NEg (5f)

In formulation (2), we replace the force vector F with the
difference of two non-negative vectors (t−c). This splitting
leads immediately to the physical meaning that the vector
t corresponds to the tension forces and c corresponds to
the compression forces. Thus, we decouple the tension and
compression field. The binary design variables s indicate the
presence of struts, serving to replace the non-differentiable
function χ . The binary matrix G is elaborated upon in
Section 3.3.

While the objective function and most constraints are
directly translated from formulation (2) to formulation (5),
it is not obvious to see that constraints (5c) and (5e) ensure
(2c). Based on c � s, we can see that s−χ(F) � 0, because
se can be 1 when the corresponding force (ce) is 0 while
χ(Fe) must be 0 when Fe is 0. Considering that all entries
of G are either 1 or 0, we find that,

G(s − χ(F)) � 0, (6)

thus,

Gs � n =⇒ Gs − G(s − χ(F)) � n

=⇒ G(χ(F)) � n =⇒
∑

e∼v

χ(Fe) � n. (7)

The proposed formulation has a natural and smooth
relaxation to linear programming as we increase the allowed
connectivity of struts, i.e., Class n. It is also observed that
the proposed formulation is less computationally expensive
than other similar formulations (Ehara and Kanno 2010;
Kanno 2012, 2013a, b; Xu et al. 2016) for problems
of similar size, probably due to the simplicity of the
formulation. Additionally, relative to existing formulations,
we consider much fewer discrete variables (the minimal
number required to define a tensegrity). The disadvantage of
our treatment is that we do not have control over the physical
contact of cables with other cables or struts. However,
from a practical point of view, cables are usually very
thin and flexible members such that even if they touch
other members, the influence on the structure is local. It
is also easy to handle the contact, for example, by making
a small hole in the strut that can be passed through by an
intersecting cable. More importantly, other formulations for
topology design of tensegrity have not demonstrated their
ability to capture a variety of known tensegrities. In contrast,
the present formulation is effective in attaining many of
the known configurations, as illustrated in Section 4 and
Appendix 1.

3.3 Matrix notation for the topological constraints

The discontinuity of compressive members is a signature of
tensegrity structures, although the generalized definition of
tensegrity allows relaxation of the discontinuity. It is well
known that this topological constraint can be expressed as
a linear inequality on the integer variables related to the
presence of struts (Ehara and Kanno 2010; Kanno 2012,
2013a, b; Xu et al. 2016). For completeness, and also for
the ease of numerical implementation, we explain the idea
using matrix notation here. Let’s define the incidence matrix
G based on the ground structure such that:

Gij =
{

1, if member j is connected to node i

0, otherwise
(8)

Thus, G is an NVg × NEg binary matrix which contains
the connectivity information, i.e., the topology, of a ground
structure. The parameters NVg and NEg refer to the number
of nodes and members in the ground structure. Each column
of G contains exactly two nonzero entries whose row
indices correspond to the end nodes of a member. We then
define a binary vector of size NEg ×1, whose kth entry refers
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to the kth member of the ground structure, with the value of
1 indicating the presence of a member. For any collection of
members that are embedded in the ground structure, there
exist a unique binary vector x representing the collection.
When we apply matrix vector multiplication as Gx, the
resultant vector is of size NVg ×1, where each entry indicates
the number of members connected to each node. Let us
use the same vector s as before for the collection of all
compressive members. Then, the discontinuity condition is
written as a linear constraint:

Gs � n (9)

where n is a NVg ×1 vector of positive integers confining the
level of discontinuity of the struts. For Class-1 tensegrity,
we have that n = 1. This idea is often used in the field
of graph theory for matching problems (Godsil and Royle
2001). Indeed, this linear constraint reveals an interesting
possibility when there are different connectivity constraints
of struts at different nodes.

Considering practical construction of tensegrities, it is
desirable to avoid physical contact of struts. One can
address collisions between struts as a linear constraint about
the integer design variables, similarly to the discontinuity
constraint. Although there are ways to get around the
case when two struts collide mid-length (e.g., splitting one
strut near the collision point, or making struts curved), in
practice, these intersections should be avoided because they
make the tensegrity difficult to manufacture. To control
collisions in the design, an additional topological constraint
can be added that prevents the physical intersection of struts
(Kanno 2013b). Suppose that we have a criterion that judges
whether there is a conflict between two struts. For each
(potential) intersection of members (i, j) in the ground
structure, a (binary) row vector is defined, with ones in
the column positions for members i and j , respectively.
Sweeping the entire ground structure, we assemble these
row vectors into a binary matrix Gp, whose number of
rows is the number of (potential) conflicting pairs. Then the
physical constraint is written in the following form:

Gps � 1 (10)

The matrix Gp works following the same logic as
the topological constraint matrix G. Each row of Gp

corresponds to a fictitious intersection point reporting an
occurrence of conflict between two members. For the
case that several members intersect at the same point, as
we impose the constraint using (10), a violation happens
whenever two of the intersected members are present in
the structure. In this paper, we set the collision criterion to
be the intersection of centerlines of members. A different
criterion can be found in Kanno (2013b). The number of
rows of Gp depends on the specific geometry of the ground
structure. The construction of the matrix Gp is conducted as

an offline process a priori to the optimization. Using parallel
computing and other techniques from computer graphics,
the process can be efficiently done.

It should be noted that this intersection test in our
formulation does not involve the cables (tensile members),
since they are not included in the vector s. This follows
from the assumption that the tensile members are thinner
and typically flexible enough to handle intersections
(collisions). Moreover, colliding cables can split at the
intersection point creating a new node, with no effect on the
principles and behavior of the tensegrity.

3.4 Ground structuremethod

A typical ground structure (Dorn et al. 1964; Smith 1998;
Zhang et al. 2017) is a set of nodes and members within
a fixed geometry, as illustrated by Fig. 4. In structural
topology optimization, the ground structure method is par-
ticularly suitable for design of discrete structures (Bendsøe
and Sigmund 2003). The importance of the geometry and
layout of ground structures has not yet been discussed for
topology design of tensegrity. As the main input to the
optimization, the properties of the ground structures can
have a big influence on the solution. For example, defining
passive regions in the ground structure where no member
can cross provides some control over the final tenseg-
rity design. We adopt the techniques on ground structure
generation developed for typical topology optimization, and
explore how they can be used to tune the final design of
tensegrities.

The ground structure can be generated inside arbitrary
domains with various geometries. For convex domains, it
is relatively easy to generate a geometrically conforming
ground structure inside the domain. However, the challenge
arises for ground structures filling concave geometries, in
which members with both ends within the valid domain can
have a part that is outside. We adopt the restriction zone
idea from Zegard and Paulino (2015), which is inspired
by the collision detection algorithm used in computational

Fig. 4 The ground structure generated within pentagon prism. a
Geometry of the pentagon prism. b The ground structure connecting
every pair of nodes, which are located on the vertices of the prism
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geometry, to resolve this issue. Members with any portion
within the restriction zone are removed, resulting in a ground
structure that conforms to the specified concave geometry.

We can control the length of members by further adjust-
ing the ground structure, which may be useful, for example,
if we want to avoid members that can easily buckle. If
the constraint applies to both struts and cables, we simply
remove the members from the ground structure that exceed
the length limit. If the length constraint is only applicable
to the struts, we impose a zero upper bound on the corre-
sponding design variables in the vectors c and s. Notice that
this strategy is only effective for unstructured ground struc-
tures without collinear members, which are typically used
for topology design of tensegrity. When Class-1 tensegrity
is used (emphasis of this paper), the “length constraint” is
also effective for structured ground structures because no
pair of collinear struts are allowed to connect to each other.

4 Numerical examples: verification
and extension

In this section, we demonstrate that the proposed formula-
tion is effective in reproducing known tensegrity structures
by feeding specific geometries of the ground structure.
Additionally, by varying the geometric parameters of the
known tensegrities, we discover new forms of tensegrity.
Hence, we provide a new perspective on the classification
of tensegrity by its geometry rather than its topology.

For each example, numerical data is provided in tables.
The numbers of nodes and members in the ground structure
are denoted NVg and NEg , respectively. The terms NV and
NE are the numbers of nodes and members in the final
topology, respectively. The stability status of the obtained
designs is also provided based on the criteria discussed
in Section 2. The degree of kinematic indeterminacy (KI)
of the dual truss of a tensegrity is also included in the

tables. We observe that for symmetric ground structures, the
optimized solutions usually have one or more mechanisms
associated with their dual truss. When a length limit for
struts is applied, the number of reduced integer variables is
given as NI . The running time of MILP is reported as Topt

for reference.
We explore the categories of tower tensegrity and spher-

ical tensegrity in this section. Other examples including
prismatic tensegrity and symmetric star-shaped tensegrity
can be found in Appendix 1. The physical constraint is
applied to restrict the intersection of the centerlines of struts,
using the method proposed in Section 3.3.

4.1 Tower tensegrity

The general composition of the geometry of tower tensegrity
is shown in Fig. 5. We restrict our study to two-layer towers,
in which two twisted prisms are aligned vertically with an
overlapping height hd . The angles α1 and α2 measure the
twisting of the twisted prisms, and β is the relative rotation
between the two prisms. Following this rule, by altering α1,
α2, β, hd , as well as the base polygon of the twisted prisms,
we can find different embedded tensegrity structures.

One famous example in this category is the “Saddle-
Vertical-Diagonal” (SVD) tensegrity (Sultan 1999). The
geometry of the two-stage tower tensegrity can be obtained
by laying one twisted triangular prism on top of another, as
illustrated in Fig. 6a. To recover the specific configuration
of the SVD tower tensegrity, the geometric parameters listed
in Fig. 7a are selected to satisfy the formula given by
Tibert (2002). The resulting tensegrity is plotted in Fig. 6b.
The optimization selects 6 struts and 24 cables out of 66
candidate members in the ground structure within 0.06 s.
The obtained tensegrity is known to have a dual truss with 1
degree of kinematic indeterminacy.

A free choice of the parameters leads to new tensegrities.
For example, the designs shown in Fig. 7 are obtained based

Fig. 5 a The geometry and
generation of the tower
tensegrity. b Illustration of the
cylindrical restriction zone
adopted in this example. Any
member in the initial ground
structure that passes through this
region is removed
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Fig. 6 The SVD tower
tensegrity. a Geometric
decomposition of the SVD
tower, where the 12 vertices are
the nodes used to generate the
ground structure. b The design
obtained using the proposed
formulation, which recovers the
known form of the SVD tower
tensegrity

on hexagonal prisms with α1 = α2 = π/8 and β =
π/8. We further show that by adding a hole in the ground
structure and adding length constraints, we can tune the
design to different configurations, as shown in Fig. 7c, d. If
we adjust the overlapping depth hd to be 0.283, the resulting
tensegrity design becomes kinematically indeterminate—its
dual truss has 7 infinitesimal mechanisms (see Fig. 7e). This
example shows that the geometry of the ground structure is
a crucial aspect in the topology optimization of tensegrity.

By fine-tuning the geometry of a ground structure, we can
generate a family of tensegrities with different features.
Information for all four designs is provided in Table 1.

4.2 Spherical tensegrity

Spherical tensegrity constitutes a large family among
the known tensegrities. In this section, we will design
tensegrities with nodes on a sphere. We will first recover

Fig. 7 Extended examples of
tower tensegrity. a The basic
geometry. b The design obtained
directly from the ground
structure generated with full
connectivity. c The tensegrity
obtained by limiting the length
of struts to 2.5, which is in
consistent units with the
dimension of the geometry. d In
addition to length limit, a
cylindrical restriction zone is
applied with rRZ = 0.3. e Based
on d, by adjusting the
overlapping height hd , a
kinematically indeterminate
tensegrity design emerges
naturally as a result
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Table 1 Computational results
for designs shown in Fig. 7 Design NVg NEg NV NE NI Obj. KI Stability Topt

(b) 24 276 24 72 276 22.23 0 Super-stable 0.43 s

(c) 24 276 24 72 240 22.03 0 Super-stable 0.16 s

(d) 24 228 24 72 198 19.47 0 Super-stable 0.20 s

(e) 24 228 24 60 198 19.61 7 Prestress-stable 0.09 s

some of the designs that are already known. Then, we
propose some new designs obtained by the proposed
method. We will adopt the restriction zone method to
generate ground structures with a central hollow ball region.
This can be useful for tensegrity robots or protectors design
in which a central void may need to contain some functional
devices (Caluwaerts et al. 2014). The geometry of the
restriction zone for this example is illustrated in Fig. 8. The
nodes are on the outer sphere and an inner ball with radius
rRZ is defined as the restriction zone.

The known spherical tensegrity structures often outline
regular polyhedrons or truncated regular polyhedrons. We
present three such structures that are reproduced by the
proposed formulation, as shown in Fig. 9a–c. The outline
polyhedrons are icosahedron, dodecahedron, and cubocta-
hedron. The first one (Fig. 9a) relies on a ground structure
generated based on the vertices of an icosahedron, with a
restriction ball of radius rRZ = 0.2. The second tenseg-
rity (Fig. 9b) has cables on the surface of a dodecahedron.
The restriction zone for the ground structure has a radius
rRZ = 0.5. The last one shown in Fig. 9c is a Class-2 tenseg-
rity, in which at most two struts can connect at each node.
There are four triangles of struts in this tensegrity, and each
of the closed chain of struts are named “strut circuits” by
Motro (2006). The initial ground structure for this one has
no restriction zone. Quantitative data is provided in Table 2.

Restriction 
Zone

r

rRZ

Fig. 8 Illustration of the ball-shaped restriction zone adopted in this
example

By taking different point sets on a sphere, we discover
new tensegrities. Figures 10, 11, 12, and 13 list some of
the new designs of tensegrity that have been discovered
by the proposed formulation. For some of them, restriction
zones are used. The first one shown in Fig. 10a outlines
a small rhombicuboctahedron. The one in Fig. 10b comes
from the truncated icosahedron, which is usually known as
the “Bucky ball.” There is an existing design of tensegrity
(Li et al. 2010a) that looks similar to the geometry of a
truncated icosahedron, but their nodes are not exactly at
the vertices of the polyhedron, and the topologies are also
different from the one we obtained. The tensegrity shown in
Fig. 11a is obtained as the best candidate optimal solution
when the optimization hits the time limit. The realization of
this design is shown in Fig. 11b. We also construct a model,
which is shown in Fig. 12b, based on the design shown
in Fig. 12a. The structure shown in Fig. 13b is a Class-2
tensegrity embedded in the geometry of an icosahedron, in
which the struts make a single loop of circuit. Quantitative
data is provided in Table 3.

5 Free-form design

In this section, we seek tensegrities that conform to arbitrary
non-regular geometries, which is desirable for designing
tensegrities for real applications.

5.1 Double-layer tensegrity dome

Tensegrities are sometimes used for roof structures (Hanaor
and Liao 1991; Pellegrino 1992). In this section, we will
show a cylindrical dome design obtained by solving the
proposed optimization formulation. The design domain is
shown in Fig. 14a. The ground structure is generated on 54
grid points placed on the surface of the design domain. The
members are all confined in the design domain by applying
a restriction zone in the interior of the inner cylinder.

The optimization takes 97.61 s to converge. We impose
Class-1 discontinuity constraint (i.e., n = 1) and prohibit
the collision of the centerlines of struts. There is no length
limit on the members. A posteriori structural analysis shows
that obtained tensegrity is super-stable, and its dual truss is
not infinitesimally rigid.
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Fig. 9 Some known spherical tensegrities that are reproduced. The ground structure of design (a) has a restriction zone with rRZ = 0.1, design
(b) has a restriction zone with rRZ = 0.5, and no restriction zone is used in design (c)

Table 2 Computational results
for designs shown in Fig. 9 Design NVg NEg NV NE Obj. KI Stability Topt

(a) 12 60 12 30 3.80 1 Super-stable 0.01 s

(b) 20 150 20 50 30.18 5 Super-stable 0.50 s

(c) 12 66 12 36 32.78 1 Super-stable <0.01 s

Fig. 10 New examples of
spherical tensegrities obtained
using the proposed method. The
radii of the restriction zones as
defined in Fig. 8 are as follows:
a rRZ = 0.20, b rRZ = 0.65
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Fig. 11 A tensegrity that
outlines a small
rhombicosidodecahedron. a
Digital rendering of the obtained
design, using restriction zone
with radius rRZ = 0.70. b A
physical model made of wood
struts and 3D printed cables.
The cables are printed with a
rubber-like material known as
Ninja Flex

Fig. 12 A spherical tensegrity
optimized from a ground
structure generated based on 16
uniformly distributed points on
the unit sphere and no restriction
zone. a Digital rendering of the
obtained design. b The physical
model made of wood struts and
rubber band cables

Fig. 13 Other new designs of
spherical tensegrities obtained
using the proposed method. a A
dense tensegrity that has 120
nodes uniformly placed on a
sphere and restriction zone with
radius rRZ = 0.65. b A Class-2
tensegrity that has a continuous
loop of struts
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Table 3 Computational results
for designs in Section 4.2 Design NVg NEg NV NE Obj. KI Stability Topt

Figure 10a 24 264 24 72 18.24 1 Super-stable 0.53 s

Figure 10b 60 990 60 180 74.26 3 Super-stable 640 s

Figure 11 60 870 60 180 55.27 0 Prestress-stable 43,200 s

Figure 12 16 120 16 50 8.99 0 Super-stable 0.03 s

Figure 13a 120 4108 120 414 202.08 0 Super-stable 706 s

Figure 13b 12 66 12 42 7.55 0 Super-stable < 0.01 s

Fig. 14 Design of a Class-1
cylindrical double-layer
tensegrity dome. a The design
domain: L = 3, Ro = 1,
Ri = 0.7. The initial ground
structure has 54 nodes and 882
members. b–d Different views
of the obtained tensegrity. The
design contains 54 nodes, 27
struts, and 153 cables. The dual
truss of the tensegrity has 2
first-order mechanisms (KI = 2).
The tensegrity structure is
super-stable

Fig. 15 Different views (a–c) of
Taubin’s heart. The mesh nodes
are used to generated the ground
structure
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Fig. 16 Different views (a–c) of
the tensegrity which outlines the
Taubin’s heart. The tensegrity
contains 53 struts and 312
cables. The lengths of the struts
are limited to 1.2, with
consistent units to the
dimensions of heart surface.
Structural analysis shows that
the structure is super-stable

5.2 Taubin’s heart

Here, we design a tensegrity structure with Taubin’s heart
shape (Taubin 1994). The shape of the surface is defined by
a level set:

(
x2 + 9

4
y2 + z2 − 1

)
− x2z3 − 9

80
y2z3 = 0 (11)

where x, y, and z are the Cartesian coordinates in R
3. The

size is scaled uniformly such that the heart surface has
the dimensions shown in Fig. 15. Then, a triangular mesh
is generated on the surface that contains 107 nodes and
210 faces. The ground structure is generated based on the
nodes of the mesh without restriction zones. We forbid the
intersection of centerlines of struts and constrain the lengths
of the struts to be smaller than 1.2, in consistent units with
the size of the heart surface.

The obtained tensegrity is shown in Fig. 16, which
takes 9032 s to converge. The tensegrity has 53 struts and
312 cables, optimized from 5671 candidates, among which
NI = 3282 members are potential struts. One of the nodes
in the initial ground structure is ignored as no member
is connected to it. The tensegrity has an infinitesimally
rigid dual truss, ensuring prestress stability. Its geometrical
stiffness matrix is also positive semi-definite, indicating it
is super-stable.

6 Numerical aspects: implementation
and efficiency

The numerical implementation of the formulation is memory
efficient. All of the constraint matrices can be constructed
and stored in a compressed format as sparse matrices. Fur-
thermore, the topological constraint and physical constraint
matrices are binary. The bottleneck for the efficiency of the
approach is the integer restrictions of design variables s.

The basic algorithm for MILP is the branch-and-bound
method. Advanced implementations usually adopt strategies

such as presolve and cutting-planes to reduce the problem
size, and heuristics and parallelism to speed up the branch-
ing search. The fundamental idea is to relax and branch
the MILP problem to many LP relaxations by allowing the
discrete integer variables to become continuous. In each
branch-and-bound search, the subproblem is solved as an LP
problem. If there is an optimal solution of the LP relaxation
found during the branching process that satisfies the integer
restrictions, then we have found a feasible candidate optimal
solution to the original MILP.1

Note that, the problem posed by our proposed formula-
tion does not guarantee existence of a solution. The exis-
tence of a nontrivial optimal solution depends on the number
of bars in the ground structure and the geometry of the
ground structure. However, usually we can find a solution
for a dense ground structure.

Additionally, as we observe from the examples, the
computational cost of the MILP varies significantly from
problem to problem and does not only depend on the
problem size. This is because, for some problems, an
optimal integer solution might appear at an early stage of the
branching process. Therefore, the time that the optimization
needs to converge is highly problem dependent. A larger
size problem might be solved within less time than a smaller
size problem (for example, the designs shown in Figs. 11
and 13a). In addition, the authors remark that it is not always
necessary to find a strictly converged solution. If the solving
time is limited, it is fine to accept a feasible suboptimal
solution, like the case of Fig. 11. However, we observe that
the implementation of the proposed formulation is generally
more efficient than other MILP formulations in the literature
(Ehara and Kanno 2010; Kanno 2012, 2013a, b), based on
computational time comparisons for problems with ground
structures of similar complexity.

1The examples in this paper are solved by the optimization software
Gurobi 6.5 (Gurobi Optimization 2014) executed by a MATLAB code.
The code is operating on a desktop with an 8-core 3.0 GHz Intel Xeon
CPU. It is also possible to use other solvers such as the MATLAB
built-in function “intlinprog” to solve the problem.
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Fig. 17 a The thin black lines
show the flatten cable net. The
thick orange lines mark the 12
pieces that are printed
separately. b The printed pattern
pieces. The number on the side
of each pattern indicates the
number of times that this pattern
embedded in the whole cable
net. c HYREL 3D printer
producing the elastic cable nets.
Image courtesy: Rob Felt

7 Fabrication of the tensegrity models aided
by additive manufacturing

In this section, we will briefly describe the fabrication
process for the physical model shown in Fig. 11b. For
such a complex design, it is difficult to attain the required
prestress by connecting the cables one-by-one to the struts.
Ideally, we want to make the cable net as a whole piece of
network. However, the cable net outlines a polyhedron, and
it is very difficult to print such three-dimensional frame-
like structures with the soft material that we are using.
Therefore, we decompose the three-dimensional cable net
into 12 planar pieces, each containing a pentagon, as
shown in Fig. 17a. Actually, the 12 pieces are made from
only three different patterns (7 of one pattern, 4 of the
second pattern, and 1 of the third pattern) as shown in
Fig. 17b. By printing 12 flat pieces, there is no need
to print a supporting scaffold, which makes the printing
process significantly easier than for the full, 3D cable
net. The cable net pieces were fabricated using the fused
filament fabrication (FFF) technology on a HYREL 3D
printer.2 The material of the filament is called Ninjaflex,3

which is a rubber-like soft material that can sustain large
elastic deformations. The cross-sectional areas of the cables

2System 30M, HYREL 3D Inc, Norcross, GA, USA
3NINJATEK, Manheim, PA, USA

are determined proportionally to the magnitudes of the
designated prestress forces. Furthermore, there are at most
two pieces of cable net connected to one node, which leads
to an easy and clean assembly process of the tensegrity
structure using the printed cable components and the wood
rods (0.25 in. diameter). The fabrication precision is also
easy to control using the 3D printer as compared to making
all the components by hand.

With the help of additive manufacturing, making complex
tensegrity models (desktop size), which is usually a difficult
task, becomes a relatively easy procedure as described in
this section. Thus, researchers and designers can quickly
prototype their tensegrity designs. Moreover, such an approach
can have a positive impact on engineering education. For
instance, 3D printing the tensegrity models designed using
our topological optimization approach is a means to bring
the computational design to reality, which motivates students
to design their own tensegrities and add a new dimension
to their learning, so that the learning spans from the
mathematical formulation, to the computational modeling,
and to the fabrication.

8 Conclusion

In this paper, we have proposed a topology optimization
formulation for the design of tensegrity structures based
on the ground structure method and a MILP approach.
The formulation is simple, elegant, and easy to implement.
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During optimization, a tensegrity is extracted from the many
potential members in a ground structure by maximizing
the summation of self-equilibrating forces. The obtained
tensegrity design satisfies the self-equilibrium condition and
the discontinuity condition of compressive members.

The effectiveness of the formulation is verified by numer-
ical examples. The reproduction of existing well-known
tensegrities is important because it shows that, as long
as the specific geometry is provided, the proposed for-
mulation, although simple, automatically converges to the
desired solutions. The topology design of tensegrity is an
open problem without a naturally defined objective; thus,
the choice of the objective function can make a big differ-
ence. In this context, the force maximization formulation
appears with some nice features. Although not enforced
explicitly, the formulation usually leads to tensegrity struc-
tures that are stable and symmetric, which are commonly
desirable features. We also explore the possibility to obtain
tensegrities with desired geometrical and topological fea-
tures by controlling the design space offered by the ground
structure. This feature could be very useful when designing
for engineering applications, in which the tensegrity struc-
tures must adapt their shapes in order to carry payloads or
avoid nearby objects. The numerical implementation of our
formulation is efficient in comparison to other mixed inte-
ger formulations and enables designs of relatively complex
tensegrities, as shown in some of the examples. These ben-
efits make it suitable for preliminary designs of engineering
tensegrity structures (e.g., tensegrity protectors carrying a
payload).

We remark that the formulation presented here is a basic
one that can incorporate other constraints for different pur-
poses. For instance, examples of constraints previously
reported can be found in Ehara and Kanno (2010), Kanno
(2012, 2013a, b), and Xu et al. (2016), which are also appli-
cable, with some modifications, to our basic formulation.
In future development, we plan to adopt some strategies
such as a multi-step optimization (Felix and Vanderplaats
1987), to allow flexibility on the position of nodes so
that we can combine the advantages of both topology and
geometry design methods for tensegrity.
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Appendix 1: On reproducing known
tensegrities: a verification study

One of the most well-known types of tensegrity is the
prismatic tensegrity. This type of tensegrity has various
configurations, but all of them obey the dihedral symmetry.
A systematic study of the configuration and stability of the
prismatic tensegrity can be found in the literature (Ohsaki
and Zhang 2015; Zhang et al. 2009). The nodes of a
prismatic tensegrity are located on the vertices of a twisted
prism with each base face being a regular N-gon. The N

vertices of the N-gon are incident on a circle. The twisting
angle between the two parallel base faces is denoted as α,
as shown in Fig. 18.

We first generate the ground structure based on the
twisted prism with full connectivity between nodes. The
prism has a height of 1.0 (i.e., h = 1), and the radius of the
outline circle of the base polygon is also 1 (i.e., r = 1). The
results are shown in Fig. 19 for different geometries of the
twisted prism. All of the results are super-stable, which has
been proved analytically by Ohsaki and Zhang (2015) and
Zhang et al. (2009).

There is another family of tensegrity that has similar config-
urations to the prismatic tensegrities, namely the symmetric
star-shaped tensegrity (Zhang and Ohsaki 2015), which also
satisfies the dihedral symmetry. The difference is that a star-
shaped tensegrity structure has two additional nodes lying

α

A

B

α
(a) (b)

h

r
r

Fig. 18 The geometry and generation of a twisted prism. a The base
polygon laid on the top circle B is obtained by rotating the same
polygon on the bottom circle A with an angle α. b The top view of the
twisting of the hexagonal base
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Table 4 Computational results
for the designs shown in Fig. 19 Design NVg NEg NV NE Obj. KI Stability Topt

(a) 6 15 6 12 1.31 1 Super-stable < 0.01 s

(b) 8 28 8 16 2.21 3 Super-stable < 0.01 s

(c) 10 45 10 20 4.67 5 Super-stable 0.02 s

(d) 12 66 12 24 6.66 7 Super-stable 0.02 s

(e) 16 120 16 32 13.44 11 Super-stable 0.02 s

(f) 32 496 32 64 63.54 33 Super-stable 0.58 s

on the centroids of the base faces. Therefore, in a prismatic
tensegrity structure, there is essentially only one type of
node, but in a star-shaped tensegrity, there are two types of
nodes. To reproduce the known star-shaped tensegrities, we

generate the ground structure using the nodes on the ver-
tices of the twisted prism and the two additional nodes at
the centroids of the top and bottom faces. Figure 20 shows
a few examples of reproduced star-shaped tensegrities.

Fig. 19 Examples of prismatic
tensegrities that are reproduced
using the proposed method.
Different base polygons are used
to generate the twisted prism
geometries: a–f For N-gon-
based twisted prism, α = π/N

if N is even, and α = π/2N if
N is odd. Quantitative data is
provided in Table 4
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Fig. 20 Examples of star-shaped
tensegrities that are reproduced
using the proposed method.
Different base polygons are used
to generate the twisted prism
geometries: a–c Compared to
the prismatic tensegrities, the
initial ground structures have
two more nodes that are located
at the centroids of the two base
polygons. Quantitative data is
provided in Table 5

Table 5 Computational results for designs shown in Fig. 20

Design NVg NEg NV NE Obj. KI Stability Topt

(a) 8 28 8 12 3.33 7 Super-stable < 0.01 s

(b) 10 45 10 16 3.78 9 Super-stable < 0.01 s

(c) 12 66 12 20 5.96 11 Super-stable 0.01 s

Appendix 2: An illustrative example
of the topological constraints

We use the following example to illustrate how the topo-
logical constraint and physical constraint work. Suppose we
have a ground structure as shown in Fig. 21a. Label the ver-
tices from A to F and edges from 1 to 9. Based on the given
topology, we can construct the topological constraint matrix
G as:

G =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 1 1 0 0
1 1 0 0 0 0 0 1 0
0 1 1 0 0 0 0 0 1
0 0 1 1 0 0 1 0 0
0 0 0 1 1 0 0 1 0
0 0 0 0 1 1 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦

6×9

(12)

The rows of the matrix correspond to the connectivity infor-
mation at nodes A to F. The columns contain the connectivity

information of members 1 through 9. For example, the third
row shows that members 2, 3, and 9 are connected to node
C. Furthermore, since members 7, 8, and 9 intersect at one
point, we have the physical constraint matrix Gp reads:

Gp =
⎡

⎣
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0 1

⎤

⎦

3×9

(13)

As discussed before, the coincident intersection point is split
into three fictitious intersection points.

Suppose we have a collection of members from the
ground structure represented by the binary vector x whose
kth entry reflects the presence of member k in the collection.
Let x1 = [1, 1, 0, 0, 0, 0, 0, 0, 0]T meaning that members
1 and 2 are in the collection as shown in Fig. 21b. The
matrix vector multiplication Gx1 gives [1, 2, 1, 0, 0, 0]T

which clearly shows that there are two members in the
collection connected to node B. If the constraint is set for
Class-1 tensegrity and the collection x1 represents the struts,
x1 will violate the topological discontinuity constraint. To
show how the physical constraint works, we set x2 =
[0, 0, 0, 0, 0, 0, 1, 1, 0]T, which contains members 7 and 8,
as shown in Fig. 21c. The linear operation Gpx2 produces
[2, 1, 1] with first component larger than 1 indicating a

Fig. 21 a A simple ground
structure with 6 nodes and 9
members. b The collection of
members 1 and 2 in the ground
structure. The two members are
connected at node B. c Members
7 and 8 are contacting each
other in the middle, indicating a
conflict in space
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violation. Thus, the physical constraint successfully shows
that members 7 and 8 cannot exist at the same time.

Appendix 3: Basic structural analysis
of tensegrity structures

The construction of the stiffness matrix for a tensegrity
structure is different from a normal truss due to the presence
of prestress forces. Detailed derivations and discussions can
be found in Guest (2006, 2011) and Zhang and Ohsaki
(2015). Here, we briefly summarize the key ideas. The
basic assumptions here are that both struts and cables are
rectilinear members made of materials that have linear
elastic constitutive relationships, and the strains in the
members are always small. The geometric stiffness matrix
formulation adopted here is an incomplete version that
is accurate for small strain analysis. Indeed, the present
expression for KG is called the “stress matrix” (Connelly
1999), which is part of the complete geometric stiffness
matrix (Guest 2011).

Assume the cross-sectional area, length, and Young’s
modulus of member i are Ai , Li , and Ei , respectively. The
coordinates of node j are stored in the vector pj . First, let
us define the modified incidence matrix C. In graph theory,
the incidence matrix is binary (like the matrix G in (5c)),
but here, the modified matrix is composed of 0’s, 1’s, and
− 1’s. Suppose member i links nodes a and b. Then, C is
defined as:

Cij =
⎧
⎨

⎩

1, if member i is connected to node j, and j = a

−1, if member i is connected to node j, and j = b

0, otherwise

(14)

The size of the modified incidence matrix C is NE × NV .
Then, the augmented incidence matrix that connects the
degrees of freedom to the members is defined as:

Caug = C ⊗ 11×3 (15)

where ⊗ means the Kronecker product, so that Caug has
size NE × 3NV . The vector 1 is a vector of ones. The
total number of degrees of freedom in the structure is 3NV

because we are considering three-dimensional space. We
assemble all the nodal coordinates (i.e., pj ’s) in a vector
p by blocks of 3 components. We obtain the equilibrium
matrix as:

B = PCT
augL

−1 (16)

where P = diag(p), with its diagonal entries containing
all the nodal coordinates, and L being a diagonal matrix of

member lengths. We define another diagonal matrix D of
size NE × NE , such that

Dii = EiAi

Li

(17)

Then, the linear stiffness matrix KE of a tensegrity is given
as:

KE = BDBT (18)

which is a symmetric matrix with 3NV rows and 3NV

columns. By assuming that the prestress force in member i

is Fi , we define a diagonal matrix Q as:

Qii = Fi

Li

(19)

The ratio Fi/Li is known as the force density. The so-called
force density matrix (Zhang and Ohsaki 2015) (or reduced
stress matrix; Connelly 1999; Schenk et al. 2007) is then
formed by:

E = CTQC (20)

which is of size NV × NV . Then, the geometrical stiffness
matrix is constructed by:

KG = E ⊗ I3×3 (21)

where I is the identity matrix. Finally, the tangent stiffness
matrix of a tensegrity is the summation of the linear stiffness
matrix and the geometrical stiffness matrix:

K = KE + KG (22)

Appendix 4: Nomenclature

1 Vector of ones
B Equilibrium matrix
F Member forces
G Incidence matrix
Gp Physical contact matrix
K Tangent stiffness matrix
KE Linear elastic stiffness matrix
KG Geometrical stiffness matrix
p Coordinates of nodes, 3N × 1 vector
s A binary vector for the presence of struts
u Displacement of nodes, a perturbation on p
uM First-order mechanisms of the dual truss of a

tensegrity
E Edges of a graph
e An edge (member)
Eg Edges of the ground structure
G A graph
H,K Symmetry groups
hi, ki Symmetry operations
n,n Level of discontinuity of struts
NI Number of active integer variables
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nr Number of rigid-body motions
NEg Number of members in the ground structure
NE Number of members in the obtained tensegrity
NVg Number of nodes in the ground structure
NV Number of nodes in the obtained tensegrity
Topt Running time of the optimization
V Vertices of a graph
v A vertex (node)
Vg Vertices of the ground structure
KI Kinematic indeterminacy
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