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Growth rules for irregular architected materials with
programmable properties
Ke Liu1,2, Rachel Sun1†, Chiara Daraio1*

Biomaterials display microstructures that are geometrically irregular and functionally efficient. Understanding
the role of irregularity in determining material properties offers a new path to engineer materials with superior
functionalities, such as imperfection insensitivity, enhanced impact absorption, and stress redirection. We
uncover fundamental, probabilistic structure–property relationships using a growth-inspired program that
evokes the formation of stochastic architectures in natural systems. This virtual growth program imposes a set
of local rules on a limited number of basic elements. It generates materials that exhibit a large variation in
functional properties starting from very limited initial resources, which echoes the diversity of biological
systems. We identify basic rules to control mechanical properties by independently varying the
microstructure’s topology and geometry in a general, graph-based representation of irregular materials.

T
he properties of materials depend both
on their chemical composition and on
the geometry of their microstructures.
Empowered by carefully engineered sub-
scalemicrostructures, architectedmate-

rials (1–5) have been suggested for applications
in optics (6), electromagnetics (7, 8), acoustics
(9), and robotics (10–12). In mechanics (13),
architected materials have been designed to
exhibit negative thermal expansion (14), nega-
tive Poisson’s ratio (15), ultrahigh strength-to-
weight ratio (16, 17), tunable failure load (18),
vanishing shearmodulus (19), and shear-normal
coupling (20). To reduce the complexity of
designing structures in a nearly infinite space,
human-made architected materials are mostly
designed by periodic tessellations of selected
geometric motifs. These motifs are either de-
rived empirically from a limited number of
known geometries, such as biomaterials, crys-
talline solids, and art (15, 16, 21), or com-
putationally generated within bounding boxes
discretized into pixels or voxels (22–25).
Materials with periodic microstructures are

special cases in the realm of architected
materials. Natural materials are usually char-
acterized by irregular and heterogeneous
microstructures, such as wood (26), nacre
(27), insect nests (28) (Fig. 1A), or human
bones (29). They present distinctive proper-
ties, such as the exceptionally white scales of
some beetles (30) or the functional stability
to perturbations of proteins (31). The geo-
metric irregularity of biomaterials is a natural
outcome of self-organized growth, which un-
folds through a distributed, stochastic build-
ing process that follows simple local rules
without a centralized plan (28).

Understanding the independent role of
geometry and topology in irregular micro-
structures provides opportunities for the de-
sign and fabrication of advanced engineering
materials. However, current descriptions
of geometry used for periodic systems lead
to ambiguity in distinguishing the contribu-
tion of specific structural features, or their
repetition, on given functionalities. This
underlines the importance of developing
tools to define spatial characteristics in irreg-
ular materials.
Recently, computational methods have been

developed to design and characterize irregular
microstructures (32–36). For instance, the de-
sign of random, auxetic truss lattices revealed
important connections between Poisson’s
ratio and lattice connectivity (33, 34). How-
ever, these tools do not provide a general frame-
work to describe the geometry of architected
materials, for example, because they do not
include periodic designs in their descriptors.

A virtual growth program for microstructure
generation

To better understand the structure–property
relationships in irregular architectedmaterials,
we created a tool that evokes the distributed
stochastic building process of natural growth,
which we call the virtual growth program. The
program is a graph-based method that builds
on the combinatorial space of basic building
blocks (Fig. 1B). These building blocks are local
structural elements that can be identified in
arbitrarily complex microstructures at a scale
that is smaller than the typical unit cells in
periodic designs. In the virtual growth process,
the building blocks are connected stochasti-
cally on an underlying network, in which each
pair of neighbors abides prescribed adjacency
rules (Fig. 1, C and D). In this framework, a
material’s microstructure can be both periodic
andnonperiodic. The framework also decouples
topology (the connectivity of the underlying
network) from the geometry (the shape of the

building blocks) and allows investigating
their independent influence on global mate-
rial properties.
In this work, we use the virtual growth pro-

cess to unravel structure–property relationships
in irregular architectedmaterials.We show that
by starting from a very limited number of local
structures (i.e., the building blocks), it is possible
to generate a rich set of material microstruc-
tureswith awide range of functional properties.
Specific properties can be targeted, by selecting
adjacency rules and building blocks availability
during “growth.” These findings provide insight
into how to program material properties in
stochastic, self-assembly processes, and may
influence future manufacturing of engineer-
ing materials.
The virtual growth program relies on four

major inputs, which serve as the genome for
the generation of architected materials: (i) the
topology of the underlying network, (ii) the
geometry of building blocks, (iii) the adjacency
rules between building blocks, and (iv) the
availability of (or frequency hint for) building
blocks. The program can create materials with
differentmicrostructures (Fig. 2). For example,
the same square network (Fig. 2A) can be used
to accommodate different building blocks (Fig. 2,
B to D), including their reflections and rota-
tions (fig. S1A). The adjacency rules define
whether and how the basic building blocks
can pair with each other (fig. S1B) by enforcing
geometrical compatibility at the interface and
avoiding unwanted geometric features. For
example, in the case of Fig. 2B, we forbid two
“L”-shaped building blocks from connecting to
avoid forming disconnected loops. The avail-
ability of building blocks resembles natural
resource limits and influences howmany times
each building block appears in the final design
(fig. S1C). Infinite availability of building blocks
leads to constant frequency hints throughout
the “growth” process. Defects are likely to hap-
pen when the availability of a certain building
block is very low (fig. S1, D and E). To avoid
defects, in the rest of this study, we assume that
there is an infinite amount of building blocks
available for each “growth” process.
The virtual growth process (movie S1) imple-

ments aWaveFunctionCollapse algorithm (37).
In each step, the algorithm assigns a random
building block to the node on a predefined
network with minimal nodal entropy. Here,
nodal entropy is related to the number of build-
ing blocks that can be assigned to a given node.
For example, if only one building block can be
assigned to a given node to satisfy adjacency
rules, then its nodal entropy is zero. If a node
can be filled with any building block, its nodal
entropy is maximal. When the algorithm can-
not assign any building block to a node, a
defect forms. This process continues until all
nodes are assigned, and the nodal entropies
are updated after each step.
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Clustering and convergence of material properties
We constrain the underlying network to be a
squared grid, without loss of generality, and
use the building blocks in Fig. 2B and fig. S1.
The nondeterministic assignment of building
blocks leads to a diversity of architected ma-
terials. Even given the same building blocks,
adjacency rules, and frequency hints, the program
generates different material microstructures
every time. After generating the microstruc-

tures, we evaluate their linear elastic proper-
ties, Young’s modulus, and Poisson’s ratio in
the x and y directions. To obtain these prop-
erties, we perform numerical homogenization
(38) using the statistical volume element (SVE)
approach (39). The convergence of linear elas-
tic properties is tested on three different sample
sizes for the SVE and compared to the results
of direct simulations on larger patches (40 by
40 squared grid) of materials. As observed

in Fig. 3A, when the SVEs are of grid size 20
by 20, their properties are close enough to
that of the large 40 by 40 samples. Therefore,
for each particular set of inputs to the virtual
growth program, we generate 100 material
samples on a grid with 20 by 20 nodes and
obtain the distribution of mechanical proper-
ties by evaluating these 100 samples.
We evaluate 11 groups of architected mate-

rials generated by different frequency hints,
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Fig. 1. Schematic of the virtual growth process of irregular architected materials. (A) Termite nests have irregular internal structures that are optimized for
structural stability and ventilation (28). (B) Abstraction of the “growth” process, which assigns building blocks on an underlying graph. (C and D) Illustration of the
virtual growth process (C) in 2D (movie S1) and (D) in 3D (movie S2). The physical models in (C) and (D) are 3D printed.
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Fig. 2. Irregular materials generated by the
virtual growth program. (A) Typical output
of the virtual growth program, which is a
symbolic graph. The letters and numbers
are indexes that refer to the basic building blocks
and their orientations. (B) Lattice-like design,
which is the focus of this article. The “—,” “T,”
“L,” and “+” symbols represent the building
blocks in the box. (C) Spinodal pattern–like
design. (D) Multimaterial composite. We note
that the building blocks are not limited to
square shapes as long as the interfaces
between building blocks are compatible.

Fig. 3. Mechanical properties of the 2D irregular architected materials.
(A) Numerically evaluated Young’s modulus (Eavg/ES) and average Poisson’s

ratio (vavg) values for different sizes of materials samples as a function of the
dimension of the underlying networks. The first three groups are evaluated by
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but with the same basic building blocks and
adjacency rules (Fig. 3B). The experimental
samples are manufactured by three-dimensional
(3D) printing that uses a stiff rubbery ma-
terial [Semiflex, NinjaTek (38)]. In the exam-
ples shown in Fig. 3B, the generated materials
exhibit nearly tetragonal symmetry (not iso-
tropic) with similar effective Young’s moduli
and Poisson’s ratio when loaded along the x
and y directions (38). Hence, we use their aver-
age values, i.e., Eavg (average effective Young’s
modulus) and vavg (average Poisson’s ratio), to
compare performance of different architected

materials’ groups. To obtain a dimensionless
measurement, Eavg is normalized by the Young’s
modulus of the constituent material (ES). From
the numerical samples (fig. S2), irregular ar-
chitected materials of the same group tend
to cluster together, in different patterns. The
marginal distributions of Eavg and vavg are
shown inFig. 3C. The experimental samples also
follow similar trends in properties’ distribution,
in agreement with numerical simulations.
To study the structure–property relation de-

termined by the presence of different building
blocks, we focus on analyzing the mean values

of the clusters (Fig. 3B). We observe that the
probabilities of appearance of different build-
ing blocks have a distinctive impact on the
mechanical properties. For example, a higher
probability of the “T”-shaped building block
yields a decreasing Poisson’s ratio toward neg-
ative values but has minimal influence on the
material’s average Young’s modulus. A higher
probability of “+”-shaped building block yields
a larger Young’s modulus, but it has negligible
effects on the Poisson’s ratio. In addition, a
higher probability of both “T”- and “+”-shaped
building blocks leads to materials with a
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homogenization (SVE), and each point with error bars contains 100 samples.
The (last) reference group contains 10 samples and is evaluated by a direct
simulation, with boundary condition as shown in the inset of (D). The error bars
extend minimal and maximal values. Num, numerical; Ref, reference. (B) Plot
of Eavg/ES vs. vavg for 11 sample groups generated by using different frequency
hints, each containing numerical 100 samples. The insets use pie plots to show
the resultant probabilities of appearance of the basic building blocks. Experiments
are performed for seven groups, each with five samples. The error bars extend to
one standard deviation. The arrows indicate trends of property changes. Exp,

experimental. (C) Smoothed distributions of vavg and Eavg/ES, based on the
numerical samples. The color code follows (B). P, probability density function.
(D to G) Representative designs and their experimental stress (�s)-strain (�e)
curves under compression along both x and y directions (movie S3). The stresses
(�s) are calculated as effective stress for the bulk volume, in units of megapascals.
The stress and strains are effective values with respect to the bulk dimension of
architected materials. The colors of the designs refer to the different sample groups.
The inset shows the boundary conditions. The thin black lines show our definition of
Young’s modulus as a secant modulus between 0.005 and 0.015 strain.

Fig. 4. Decoupled effect of topology and geometry on material properties.
(A) Ranges of properties covered by three different databases of samples, each
obtained with different variants of building blocks. The dashed boundary of each
cloud reaches to the extremal values of individual samples. (B to D) Zoom-in
distribution of samples in each database. The pie plots are located at the mean

value of a group of 100 samples, with fractions of the pie showing probabilities of
appearance of the corresponding building blocks. The insets show the
geometries of the basic building blocks and their reference colors in the pie
plots. (E) Typical designs from each of the three databases are shown, with the
background colors matching the colors of the corresponding database.
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relatively high Young’s modulus and relatively
large negative Poisson’s ratio, displaying an
additive influence of building block probabil-
ities onmechanical properties. Such trends are
robust and remain consistent in both numerical
and experimental results. We note that the re-
sultant probabilities of appearance of the build-
ing blocks in the generated material samples
are slightly different from the input frequency
hints. This is due to the constraints imposed by
the adjacency rules, as compatibility require-
ments override the frequency hints (fig. S3).
We observe some hysteresis effects from the

experimental stress-strain curves (Fig. 3, D to
G). This is likely due to the constituent mate-
rial’s viscoelasticity and large deformation-
induced contacts and frictions between nearby
elements (fig. S4). Nevertheless, we only focus
on the linear regime of the experimental load-
ing curves and extract the value of the Young’s
modulus in a particular direction, as the se-
cant modulus between 0.005 and 0.015 strain.
We use a digital image correlation system to
track the deformations and obtain the values
of Poisson’s ratio (38). The discrepancies
between the numerical and experimental re-
sults (Fig. 3B) are possibly caused by imperfect

boundary conditions (e.g., friction), manufac-
turing error, and local nonlinear effects. In
particular, the group of samples with a high
probability of the “—” building block (Fig. 3G)
experiences strong nonlinear effects, as the
long beams buckle immediately after being
loaded. In fact, our experiments show that not
only the linear elastic properties but also the
nonlinear responses of the samples from the
same group tend to behave similarly (fig. S3).

Construction of material databases

The virtual growth program efficiently gen-
erates materials that cover a wide range of
linear elastic properties (Fig. 3). Hence, it can
be used as a tool to explore the design and
property space of architected materials by vary-
ing inputs.We demonstrate how changing both
the topology and geometry of material micro-
structures (Fig. 4) results in three databases
that contain 54,000 samples of architected
materials.
The three clouds in different colors refer to

the material samples that were generated by
using three geometric variants of the building
blocks. Each cloud consists of 180 groups of
samples generated by 180 different combina-

tions of frequency hints (38). The angles of
the “T”-shaped and “L”-shaped building blocks
are changed from an acute angle to a right
angle and to an obtuse angle (Fig. 4, B to D).
The red shaded cloud is occupied by the ma-
terial samples that were generated by using
the first set of variants. Because these mate-
rials are rich in the “T”-shaped building blocks
with a re-entrant acute angle, they mostly ap-
pear to be auxetic. Aswe change the geometries
of the building blocks (Fig. 4, C and D), the
range of the average Young’s modulus remains
almost the same, but the Poisson’s ratio of the
entire cloud shifts toward the positive range
(Fig. 4A). An obvious negative correlation is
observed between the average Poisson’s ratio
and the probability of the appearance of the
“T”-shaped building block (fig. S5). In gen-
eral, the growth rules andmechanical proper-
ties present nontrivial yet clear correlations
(fig. S5). Typical materials from each of the
three clouds of samples are shown in Fig. 4E.
Despite the different geometries, these three
samples share the same topology because they
have the same underlying network, only filled
with different building blocks, similar to the
examples in Fig. 2.
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Fig. 5. Redirection of stresses and deformations. (A and B) Stress
distribution in a piece of material compressed by a prescribed displacement,
with and without the presence of a hole. (A) Piece of continuum material that
has the same elastic properties as the homogenized properties of the irregular
sample in (B). (B) Piece of irregular architected material. For all four cases in (A)
and (B), the boundary condition and the color scale of Von Mises stress (sV)
are shown on the left. Insets show a zoom-in view of stress near the hole.

(C and D) Face that “smiles” under lateral compression, owing to its
heterogeneous microstructures. (C) 3D printed structure before compression.
The false color shades refer to regions generated by different frequency hints
that lead to different mechanical properties. The zoomed-in views show the
smooth transition between different regions of the microstructure. (D) Structure
during compression. The right half shows the stress distribution from numerical
simulation. The arrows show the direction of loading.
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With the virtual growth program, we can
obtain a wide range of irregular, yet program-
mable, architected materials. The program-
mable properties result from the nontrivial
probability distribution of the stochastic top-
ologies and geometries. The property space
can be further expanded. For example, we can
introduce directional preferences of the build-
ing blocks, which drives the current nearly
tetragonal elasticity to orthotropic. Moreover,

by adding new building blocks, we can sub-
stantially improve the overall shearmodulus of
the generatedmaterials [see (38) and fig. S6 for
elaboration].
One advantage offered by irregular mate-

rials is that they offer redundant load paths:
When one part of the material is damaged,
the stress within the irregular architecture
is redistributed through the complex micro-
structural network. This redistribution ensures

that the maximum stress anywhere within
material remains almost the same, before and
after damage, which prevents a cascading
failure. We compare the stress distribution in
a continuum and in an irregular architected
material, before and after punching a hole in
the sample (Fig. 5, A and B). Results of com-
pression tests show that, although the uniform
sample shows classical stress concentration
near the hole, the irregular material shows no
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Fig. 6. Extension to 3D irregular microstructures. (A) Basic building blocks.
(B) Three geometric variants of selected building blocks. (C) Ranges of
properties covered by the generated architected materials. Each cloud
corresponds to the database that was generated by using different variants of
building blocks in (B). (D) Zoom-in distribution of samples in the first database.
The pie plots are located at the mean value of a group of 100 samples, with
fractions of the pie showing probabilities of appearance of the building blocks

within the bounding box of the corresponding color in (A). (E and F) Influence of
the probability of appearance of certain basic building blocks (insets) on different
mechanical properties. (G and H) Directional Young’s modulus (E, normalized by
ES, the Young’s modulus of the constituent material) and shear modulus
(G, normalized by Gs, the shear modulus of the constituent material) of the group
of samples marked a diamond box in (D). (I) Digital rendering of a material sample
in the marked group in (D).
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such stress concentration. Rather, the stress in
the sample with a hole is redistributed through-
out the entire sample without drastic varia-
tions in peak stress, compared with peak stress
values of the sample without a hole.
Irregular microstructures can be designed

to present heterogeneous distributions of local
elastic properties (40). For nonperiodic archi-
tected materials that are designed from a
database of unit cells (24), tessellating differ-
ent structures and constituent materials while
ensuring connectedness and compatibility is
challenging (25, 40, 41). By using the virtual
growth program, designing materials with
inhomogeneous properties is possible with a
single, continuous process by assigning dif-
ferent frequency hints to different regions of
the sample.With this approach, connectedness
and compatibility are automatically guaranteed
by the adjacency rules. For instance, we show
how it is possible to design an inhomogeneous
microstructure that can concentrate deforma-
tions in selected areas of a sample. We high-
light this ability by designing a “face” that
“smiles”whenbeing compressed from the sides
(Fig. 5, C and D). To change the deformation
characteristics, we assigned different frequency
hints to the different regions on the “face” (Fig.
5C). These sets of frequency hints are extracted
from our databases (Fig. 4 and fig. S6).
By defining 3D building blocks (Fig. 6A) and

adjacency rules, the virtual growth program
can be extended to produce 3D irregular ar-
chitected materials. Similar to the 2D case, we
constructed a database of 33,000material sam-
ples that were based on three different geo-
metric variations on selected building blocks
(Fig. 6B) and 110 different frequency hints (Fig.
6, C and D). Each material sample is generated
on a 10 by 10 by 10 cubic grid. Each building
block is enclosed in a cube of size 5 mm by
5 mm by 5 mm, and the lattice (beam) mem-
bers are assumed to be circular, with a radius of
1 mm. We observe interesting correlations be-
tween the probabilities of appearance of build-
ing blocks and the mechanical properties (Fig.
6, E and F, and figs. S7 to S9). The anisotropy
of the generated materials can be seen from
the directional Young’s modulus and shear
modulus (Fig. 6, G and H) as a result of our
particular selection of basic building blocks. A
rendered image of a typical sample highlights
the 3D irregular architecture (Fig. 6I).

Discussion and outlook

We describe fundamental, probabilistic rules
that control the overall mechanical response
of irregular materials. Our approach establishes
a general, graph-based representation of mate-
rial microstructures, which we use to create
architectedmaterials with functionally graded
properties and to demonstrate robustness
against damage. In the future, the approach
could be further extended to designmaterials
with prespecified properties by incorporating
optimization approaches in the selection of
building blocks and/or in the adjacency rules
for growth. The basic building blocks could
also be selected to havemore geometries (e.g.,
learned from data), different constitutive ma-
terials, and dimensional scales (e.g., to realize
hierarchical materials). The underlying graph,
which in this work is represented as squared
or cubic grids, can be extended to have more
complex connectivity. Because the virtual growth
program is independent from any particular
material properties, it is readily applicable to
discover nonlinear and multiphysical proper-
ties of materials.
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An irregular plan
Materials with irregular microstructures are common in the natural world and often have interesting properties. Liu et
al. devised a growth-inspired program for generating irregular materials from a limited number of basic elements. Using
building blocks with arbitrary complexity, the authors stochastically connected them subject to a set of local rules. The
results echoed the diversity of natural systems with a large range of functional properties. —BG
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Materials and Methods 

Sample fabrication 

The physical samples are 3D printed using the NinjaTek Semiflex filament (Fenner Inc.) on 

CraftBot Plus FFF 3D printers. Each sample is of size 100mm×100mm×15mm. We measured 

the linear elastic properties of the Semiflex material, and obtained its Young’s modulus as 𝐸𝐸𝑆𝑆 =

52.53 MPa, and Poisson’s ratio as 𝜈𝜈𝑆𝑆 = 0.46. The 3D model is printed by the Sintratec Kit SLS 

printer (Sintratec AG) using Nylon material.  

 

FEM simulations 

The mechanical properties of the 2D SVE samples are evaluated using custom 

homogenization code written in Matlab, based on square-shaped Q4 elements, using periodic 

boundary condition, assuming plane stress. Direct simulation on the 40×40 samples are 

performed without periodic boundary condition. Each building block is mapped to a 20×20 

pixelated discretization. The solid parts are modeled as linear elastic material with properties of 

the Semiflex material. The voids are modeled as a very soft material (𝐸𝐸𝑉𝑉 = 0.001𝐸𝐸𝑆𝑆, 𝜈𝜈𝑉𝑉 = 0), a 

technique that is often used in the field of topology optimization. The examples in fig. 5 are 

performed in Comsol using second order triangular elements. 

The mechanical properties of the 3D samples are evaluated using custom homogenization 

code written in Matlab, based on frame elements, with 3 translational and 3 rotational degrees of 

freedom at each node, using periodic boundary condition. 

From the homogenization analyses, we obtain the material’s effective elasticity tensor 𝑪𝑪, 

which describes the material’s infinitesimal response in all directions. The commonly used 

material properties, such as the Young’s modulus and Poisson’s ratio, are functions of the 

elasticity tensor. Let 𝑺𝑺 = 𝑪𝑪−1 as the compliance tensor, the inverse of 𝑪𝑪. Denote 𝝈𝝈 and 𝜺𝜺 as the 

stress and strain tensor, respectively. If we define 𝐸𝐸𝑥𝑥, 𝐸𝐸𝑦𝑦, and 𝐸𝐸𝑧𝑧 as the Young’s moduli in the 

𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 directions, respectively, they are given by: 

𝐸𝐸𝑥𝑥 = 𝜎𝜎11
𝜖𝜖11

= 1
𝑆𝑆1111

, 𝐸𝐸𝑦𝑦 = 𝜎𝜎22
𝜖𝜖22

= 1
𝑆𝑆2222

, 𝐸𝐸𝑧𝑧 = 𝜎𝜎33
𝜖𝜖33

= 1
𝑆𝑆3333

. (1) 

The average Young’s modulus used in this article is defined as the average of the Young’s 

moduli in different directions. For 2D: 
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𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎 = 1
2 �𝐸𝐸𝑥𝑥 + 𝐸𝐸𝑦𝑦�. (2) 

For 3D: 

𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎 = 1
3 �𝐸𝐸𝑥𝑥 + 𝐸𝐸𝑦𝑦 + 𝐸𝐸𝑧𝑧�. (3) 

Similarly, the Poisson’s ratio along different directions are defined by: 

𝜈𝜈𝑥𝑥𝑥𝑥 = − 𝜀𝜀21
𝜀𝜀11

= −𝑆𝑆2211
𝑆𝑆1111

, 𝜈𝜈𝑦𝑦𝑦𝑦 = − 𝜀𝜀12
𝜀𝜀22

= − 𝑆𝑆1122
𝑆𝑆2222

, 

𝜈𝜈𝑦𝑦𝑦𝑦 = −𝜀𝜀32
𝜀𝜀22

= − 𝑆𝑆3322
𝑆𝑆2222

, 𝜈𝜈𝑧𝑧𝑧𝑧 = −𝜀𝜀23
𝜀𝜀33

= −𝑆𝑆2233
𝑆𝑆3333

, 

𝜈𝜈𝑥𝑥𝑥𝑥 = −𝜀𝜀31
𝜀𝜀11

= −𝑆𝑆3311
𝑆𝑆1111

, 𝜈𝜈𝑧𝑧𝑧𝑧 = −𝜀𝜀13
𝜀𝜀33

= −𝑆𝑆1133
𝑆𝑆3333

. 

(4) 

The average Poisson’s ratio used in this article is defined as the average of the Poisson’s ratio in 

all relevant directions. For 2D: 

𝜈𝜈𝑎𝑎𝑎𝑎𝑎𝑎 = 1
2 �𝜈𝜈𝑥𝑥𝑥𝑥 + 𝜈𝜈𝑦𝑦𝑦𝑦�. (5) 

For 3D: 

𝜈𝜈𝑎𝑎𝑎𝑎𝑎𝑎 = 1
6 �𝜈𝜈𝑥𝑥𝑥𝑥 + 𝜈𝜈𝑦𝑦𝑦𝑦 + 𝜈𝜈𝑦𝑦𝑦𝑦 + 𝜈𝜈𝑧𝑧𝑧𝑧 + 𝜈𝜈𝑥𝑥𝑥𝑥 + 𝜈𝜈𝑧𝑧𝑧𝑧�. (6) 

The shear modulus of a 2D material is obtained by: 

𝐺𝐺 = 1
𝑆𝑆1212

. (7) 

For 3D, we can define shear moduli for different directions as: 

𝐺𝐺𝑥𝑥𝑥𝑥 = 1
𝑆𝑆1212

, 𝐺𝐺𝑦𝑦𝑦𝑦 = 1
𝑆𝑆2323

,𝐺𝐺𝑥𝑥𝑥𝑥 = 1
𝑆𝑆1313

. (8) 

 

Mechanical testing and DIC 

The physical samples are tested on a Instron E3000 universal testing station with a 500-N 

load cell. The experimental setup is shown in fig. S3 and movie S2. The samples are placed in 

between two custom made aluminum fixtures. The contact surfaces between the fixtures and the 

samples are lubricated by silicone lubricant with Teflon (DuPont, Inc.), to reduce friction. For 
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the constituent material (Semiflex), tensile tests are conducted on five dog-bone samples (ASTM 

D638 Type IV). The Digital Image Correlation (DIC) analysis uses the VIC-2D system by 

Correlated Solution, Inc. The speckled patterns are sprayed onto the samples using an air brush. 

The DIC software captures the structures as point clouds and records the displacement of each 

point. A rectangular bounding box is defined by averaging the locations of points within a 10 

mm strip, next to each side of the bounding box. The deformation of the bounding box in each 

direction is used to compute the average strains of the material sample. The average strains in the 

axial and lateral directions are then used to calculate the experimental Poisson’s ratio, for axial 

strain approximately within the range of 0.005-0.015. 

 

The virtual growth program  

The virtual growth program is written in C#, modified from the “Wave Function Collapse” 

code published by Maxim Gumin (@mxgmn) on GitHub. Our modified version (2D) is also 

uploaded to GitHub, which is accessible from: https://github.com/Daraio-

lab/Virtual_Growth_Program. The resultant databases (fig. 4) can be accessed from the same 

link. Details of the algorithm is presented in the Supplementary Text. The 3D version and 

corresponding data is available upon request to the corresponding author.  

  

https://github.com/Daraio-lab/Virtual_Growth_Program
https://github.com/Daraio-lab/Virtual_Growth_Program
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Supplementary Text 

The virtual growth program 

The implemented version of virtual growth program in the current research consists of three 

main input elements, which serve as the fundamental blueprint for the generation of the 

architected materials: (i) the basic building blocks, (ii) the adjacency rules, and (iii) the 

frequency hints, or target probabilities, of the basic building blocks.  

The basic building blocks are elemental geometries that can be combined to produce 

complex structures, for example, the four basic building blocks shown in fig. S1B (“T”-shape, 

“L”-shape, “−”-shape, and “+”-shape). In 2D, each basic building block also has eight 

orientations through reflections and rotations, but some of them are identical due to symmetry. 

As shown in fig. S1B, there are four distinct orientations for the “T”-shaped building block, four 

for the “L”-shaped building block, two for the “−”-shaped building block, and only one for the 

“+”-shaped building block. The adjacency rules define whether and how the basic building 

blocks can pair with each other spatially, as illustrated in fig. 1C. The frequency hints of the 

basic building blocks influence how many times each building block would appear in the final 

design, which probabilistically controls the topology of the final design. 

The growth process happens on a squared network of nodes for tile placement (fig. 1D). 

Starting from an initially random tile placement, the algorithm assigns to each node on the grid a 

random basic building block, but adjacency rules must be satisfied locally. In each step, the 

algorithm first finds the node with minimal nodal entropy. The nodal entropy 𝑆𝑆𝑖𝑖 of node 𝑖𝑖 is 

defined by  

𝑆𝑆𝑖𝑖 = � −𝑃𝑃𝑗𝑗 log 𝑃𝑃𝑗𝑗
𝑗𝑗∈Ω𝑖𝑖

. (S1) 

In Equation (S1), Ω𝑖𝑖 refers to the set of building blocks that are admissible to node 𝑖𝑖. When 

one or more neighbors of node 𝑖𝑖 have already been assigned, the number of available building 

blocks reduces due to the compatibility constraint imposed by the adjacency rules. The symbol 

𝑃𝑃𝑗𝑗 denotes the normalized probability of building block 𝑗𝑗 ∈ Ω𝑖𝑖 to be chosen, such that 

∑ 𝑃𝑃𝑗𝑗 = 1𝑗𝑗 . In cases when multiple nodes have the same entropy, the algorithm randomly 

chooses one of them. This applies also to the initialization step when all nodes are empty, and at 

the highest nodal entropy. After a node is chosen, the algorithm assigns a random building block 
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to it, sampled from all admissible ones according to their probabilities. Next, the algorithm 

updates the admissible sets and nodal entropy values of all remaining empty nodes, and repeats 

this procedure until all nodes are assigned. This process is illustrated in fig. S1D and movie S1. 

Defects can form when the admissible set of building blocks for a node becomes empty. This 

happens when the algorithm cannot assign any building block that it is simultaneously 

compatible with all neighboring nodes already assigned, according to the adjacency rules. 

Because the microstructures are composed of predefined building blocks and constructed 

following rules that guarantee local compatibility, the final designs have no disconnected parts, 

with boundaries and interfaces precisely defined. 

The minimal nodal entropy heuristic ensures that the system’s total entropy decays at the 

lowest rate, and thus results in a smaller chance of defects. The node with minimal entropy in 

each step of “growth” is most likely to be a neighbor of the last assigned node, because the 

assignment of one node reduces the number of admissible building blocks in its neighboring 

nodes.  

Although the virtual growth program is most suitable to produce irregular microstructures, 

it can also generate periodic ones. When the adjacency rules apply to opposite boundaries of a 

finite grid, we obtain microstructure motifs that can be periodically tessellated. This is equivalent 

as if the opposite boundaries of a finite grid become connected to each other, topologically 

forming a torus.  

The frequency hints used to construct the databases in fig. 4 and 6 of the main text are 

generated by the following procedure. Denoting the frequency hint of each building block as 𝑤𝑤𝑖𝑖, 

to have a relatively complete coverage of all possible combinations of frequency hints, we need 

to uniformly sample the space of {𝑤𝑤𝑖𝑖} constrained by of ∑ 𝑤𝑤𝑖𝑖𝑖𝑖 = 1.0. The sampling algorithm 

follows the symmetric Dirichlet distribution, with screening to ensure relatively evenly spaced 

points, which leads to 180 different combinations of frequency hints. To uniformly sample points 

on the hyperplane of ∑ 𝑤𝑤𝑖𝑖𝑖𝑖 = 1.0, we first draw 𝑛𝑛 reals (𝑝𝑝1, 𝑝𝑝2,… , 𝑝𝑝𝑛𝑛) on the interval (0,1), 

following a uniform distribution. Then we define intermediate variables 𝑞𝑞𝑖𝑖 = − log 𝑝𝑝𝑖𝑖. Finally, 

we let 𝑤𝑤𝑖𝑖 = 𝑞𝑞𝑖𝑖 ∑ 𝑞𝑞𝑖𝑖𝑖𝑖⁄ , so that 𝑤𝑤 has a symmetric Dirichlet distribution, which is equivalent to a 

uniform distribution over the open standard (𝑛𝑛 − 1) simplex. After a new point is sampled, its 

Euclidean distances to all existing points are calculated, and only when all distances are larger 
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than a prescribed value 𝑑𝑑, this new point is accepted. This procedure leads to uniformly 

distributed points on the hyperplane of ∑ 𝑤𝑤𝑖𝑖𝑖𝑖 = 1.0, with density controlled by the parameter 𝑑𝑑. 

 

Expansion of Property Space 

In plane elasticity, materials’ elastic properties are categorized into four different symmetry 

classes: isotropic, tetragonal, orthotropic, and fully anisotropic. These symmetry classes 

characterize how a material responds to deformations in different spatial directions. For an 

architected material with periodic microstructure, its material symmetries are directly related to 

the geometric symmetry of its periodic unit cell. For example, a square-shaped unit cell with a 

four-fold symmetric pattern tessellates into a material whose elastic property is of tetragonal 

symmetry. A tetragonal material behaves the same in the 𝑥𝑥 and 𝑦𝑦 directions, but not in all 

directions. In examples shown in figs. 3 & 4 of the main text, although the microstructures 

generated by the virtual growth program are irregular, their ensembles, i.e., the bulk materials, 

exhibit elastic responses that are close to the tetragonal symmetry. This is due to both the choice 

of a squared grid and the limited selection and orientation of building block geometry. To 

demonstrate the ability to control and expand material symmetries, we demonstrate two possible 

approaches: (i) fine-tuning the building block frequencies for different orientations, and (ii) 

introducing new block geometries. 

In all examples shown in figs. 3 & 4 of the main text, each possible orientation of a building 

block was treated to have equal probability of occurrence. Therefore, the resultant microstructure 

showed no directional preference over the 𝑥𝑥 and 𝑦𝑦 directions, which is the reason why the 

materials display tetragonal symmetry. To expand the achievable material properties’ space, we 

now assign unequal frequency hints to different orientations of the building blocks, as illustrated 

in fig. S6. We separate the “T”-shaped and “−”-shaped building blocks into two groups: one 

with major load path along the 𝑥𝑥 direction, and the other with major load path along the 𝑦𝑦 

direction. We gradually change the relative probability of the two groups from 50%-50% to 

90%-10% (fig. S6A). For each of the new frequency hints, the resultant material properties are 

evaluated from 100 samples as before. Two representative samples are shown in fig. S6B. This 

change of frequency hints tunes the material elastic properties from tetragonal to orthogonal 

symmetry. As we increase the relative probability of the 𝑥𝑥-major group, the Young’s modulus of 

the generated material increases in 𝑥𝑥 direction, but decreases in 𝑦𝑦 direction (fig. S6C). The 
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Poisson’s ratio also changes along different directions. As the relative probability of the 𝑥𝑥-major 

group increases, 𝜈𝜈𝑦𝑦𝑦𝑦 becomes more negative, while 𝜈𝜈𝑥𝑥𝑥𝑥 becomes less negative (fig. S6D). We 

also observe that the distribution of 𝜈𝜈𝑦𝑦𝑦𝑦 over 100 samples become wider, while the distribution 

of 𝜈𝜈𝑥𝑥𝑥𝑥 becomes narrower. Meanwhile, this change of frequency hints reduces the shear modulus 

(𝐺𝐺) of the material in all directions (fig. S6C), without inducing directional preference.  

Using the four basic building blocks in fig. 1B leads to very weak directional Young’s 

modulus in the 45° directions (fig. S6C). To improve the Young’s modulus in these directions, 

we introduce three new basic building blocks: the “O”-shape, the “V”-shape, and the “\”-shape 

(fig. S6E). We generate a new set of architected materials generated using all seven basic 

building blocks and compare their properties to architected materials generated only using the 

four initial blocks. Each set has 100 samples generated using the same inputs. The two sets are 

chosen such that they exhibit similar Young’s modulus in the 𝑥𝑥 direction. Two representative 

samples from each set are shown in fig. S6F. We observe that adding more “O”-shaped building 

blocks significantly improves the Young’s modulus in the 45° directions, without sacrificing the 

Young’s modulus in the 𝑥𝑥 and 𝑦𝑦 directions (fig. S6G). In addition, the new set of materials 

displays a more isotropic shear modulus compared to materials obtained from only four building 

block types. The presence of “O”-shaped building blocks plays an important role in increasing 

the Poisson’s ratio, pushing both 𝜈𝜈𝑥𝑥𝑥𝑥 and 𝜈𝜈𝑦𝑦𝑦𝑦 from around 0.05 to around 0.65 (fig. S6H). 

 

Visualization 

For the 3D irregular architected materials, we have created online interactive plots to 

present the data: https://observablehq.com/@mdeagen/cg09, thanks to the help from Dr. Mike 

Deagen (mike.deagen@gmail.com).  

  

https://observablehq.com/@mdeagen/cg09
mailto:mike.deagen@gmail.com
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Fig. S1. 

(A-C) Illustration of the “virtual growth” process in 2D on a 5×5 grid of nodes. (A) Four basic 

building blocks (“T”-shape, “L”-shape, “-”-shape, and “+”-shape) and their possible orientations 

for the “virtual growth” of materials. (B) Examples of local adjacency rules. Each rule specifies 

how two basic building blocks connect to each other. (C) At each step, the node with minimal 

entropy is randomly assigned with one of the building blocks from (A), according to the 

frequency hints. This building block must be compatibility with its neighbors, specified by the 

adjacency rules in (B). (D-E) Emergence of defects on 20×20 grid of nodes. The parameter 𝑁𝑁  

denotes the ratio of the number of available building blocks over total number of nodes. (D) 

Typical defected designs for different 𝑁𝑁 . The gray dots indicate defects, where no available 

building block can be assigned while satisfying compatibility constraints. When 𝑁𝑁 = 1, all 

available building blocks must be perfectly fitted into all nodes, which is typically not possible 

and thus leaves many defects. (E) For each combination of initial frequency hints, 1000 samples 

of 20×20 grid of nodes are generated and counted. The density is defined as the ratio of nodes 

with no compatible building block to assign over all available nodes (i.e., 400). Different colors 

refer to different combinations of initial frequency hints, as shown by the inset. When 𝑁𝑁 = ∞, 
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the frequency hints do not change due to assignment of building blocks, which reflects all 

examples in the main text of this paper. When 𝑁𝑁  is finite, the assignment of a certain building 

block type onto a node reduces its frequency hint. When there are more “−” and “L”-shaped 

building blocks than “+” and “T”-shaped building blocks in the environment, defects are more 

likely to occur. This is because the “−” and “L”-shaped basic building blocks have less degrees 

(or local connectivity).  
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Fig. S2. 

Clusters of numerical and experimental data. Each data point refers to an independent sample. 

Color code follows Fig. 3B in the main text. The values of 𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎 and 𝜈𝜈𝑎𝑎𝑎𝑎𝑎𝑎 are taken as the 

average of measured values in 𝑥𝑥 and 𝑦𝑦 directions.  
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Fig. S3. 

Additional information from the experiments. (A) Differences between the prescribed frequency 

hints and resultant probabilities of appearance. (B) All stress-strain curves of the 7 groups, each 

containing 5 samples loaded in both 𝑥𝑥 and 𝑦𝑦 directions. The colored dots in the graphs 

correspond to different frequency hints as shown in (A). 
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Fig. S4. 

Snapshots from the experiment. (A) A sample of random architected material (from the same 

group shown in fig. 3G of the main text) before loading. The sample is placed in between two 

custom made aluminum blocks with shaped slots. (B) The deformed shape of the sample at 0.08 

global (compressive) strain. Strong local nonlinear behavior is observed, resulting in contacts 

between buckled elements and friction. 
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Fig. S5. 

Influence of the probability of appearance of the basic building blocks on different mechanical 

properties. The horizontal axis of each diagram is the probability of appearance of the building 
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block shown as inset within the diagram. Each color contains 100 samples generated using the 

same growth rules.   
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Fig. S6. 

Expansion of property space by altering inputs to the virtual growth program. (A) Change of 

frequency hints of the “T” and “−” building blocks in different orientations. The baseline 

frequency hints are: 40% “T”, 40% “+”, 10% “-”, 10% “L”. (B) Representative designs 

generated by biased frequency hints. The left and right correspond to the 50%-50% and 90%-

10% groups, respectively. (C) Directional mechanical responses, normalized Young’s modulus 

(𝐸𝐸/𝐸𝐸𝑆𝑆) and normalized Shear modulus (𝐺𝐺/𝐺𝐺𝑆𝑆) of the four groups in (A), each averaged over 

100 samples. 𝐺𝐺𝑆𝑆 denotes the shear modulus of the constituent material. (D) Distribution of 
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directional Poisson’s ratios (𝜈𝜈𝑦𝑦𝑦𝑦 and 𝜈𝜈𝑥𝑥𝑦𝑦) of the four groups in (A). (E) Three additional basic 

building blocks and their possible orientations. They are referred to as the “V”-shape, “\”-shape, 

and “O”-shape, from top to bottom. (F) Representative designs from two groups of samples, 

generated without (brown) and with (orange) the new building blocks, from left to right. The 

frequency hints of the group with 4 basic building blocks: 3.03% “T”, 66.01% “+”, 8.57% “−”, 

22.39% “L”. The frequency hints of the group with 7 basic building blocks: 4.73% “T”, 15.53% 

“+”, 2.66% “−”, 6.29% “L”, 66.01% “O”, 1.26% “V”, 3.52% “\”. (G) Directional mechanical 

responses of the two groups. (H) Distribution of directional Poisson’s ratios (𝜈𝜈𝑦𝑦𝑦𝑦 and 𝜈𝜈𝑥𝑥𝑥𝑥) of the 

two groups in (E). 
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Fig. S7. 

Influence of the probability of appearance of the basic building blocks on different mechanical 

properties for database #1 in fig. 6 of the main text. The horizontal axis of each diagram is the 
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probability of appearance of the corresponding building block. Each color contains 100 samples 

generated using the same growth rules. 
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Fig. S8. 

Influence of the probability of appearance of the basic building blocks on different mechanical 

properties for database #2 in fig. 6 of the main text. The horizontal axis of each diagram is the 
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probability of appearance of the corresponding building block. Each color contains 100 samples 

generated using the same growth rules. 
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Fig. S9. 

Influence of the probability of appearance of the basic building blocks on different mechanical 

properties for database #3 in fig. 6 of the main text. The horizontal axis of each diagram is the 
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probability of appearance of the corresponding building block. Each color contains 100 samples 

generated using the same growth rules. 
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