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Programmable Deployment of 
Tensegrity Structures by Stimulus-
Responsive Polymers
Ke Liu1, Jiangtao Wu2, Glaucio H. Paulino1 & H. Jerry Qi2

Tensegrity structures with detached struts are naturally suitable for deployable applications, both in 
terrestrial and outer-space structures, as well as morphing devices. Composed of discontinuous struts 
and continuous cables, such systems are only structurally stable when self-stress is induced; otherwise, 
they lose the original geometrical configuration (while keeping the topology) and thus can be tightly 
packed. We exploit this feature by using stimulus responsive polymers to introduce a paradigm for 
creating actively deployable 3D structures with complex shapes. The shape-change of 3D printed smart 
materials adds an active dimension to the configurational space of some structural components. Then 
we achieve dramatic global volume expansion by amplifying component-wise deformations to global 
configurational change via the inherent deployability of tensegrity. Through modular design, we can 
generate active tensegrities that are relatively stiff yet resilient with various complexities. Such unique 
properties enable structural systems that can achieve gigantic shape change, making them ideal as 
a platform for super light-weight structures, shape-changing soft robots, morphing antenna and RF 
devices, and biomedical devices.

Deployable structures have important applications, such as space structures1–3, robotics4, 5, morphing antenna 
and RF devices6, and biomedical devices7. Integrated only by self-stress, tensegrity8, 9 structures are inherently 
deployable1, 10, 11. They do not require mechanisms to lock the deployed shape, as many other deployable systems 
do, because the self-stresses also provide structural stability12, 13. As the struts are connected by flexible cables, 
complex articulated joints that are typical in truss-made or origami-inspired deployable structures are also cir-
cumvented. These features apply to both terrestrial11, 14 and outer-space structures1, 15, scaling from nanometers16 
to meters2. Beyond deployability, tensegrity displays aesthetic formation8, high-precision controllability and easy 
tunability11, 14. In nature, tensegrity structures are found in living systems and play an important role to the fun-
damental structure and function of cells17, 18.

Recently, advanced additive manufacturing technologies using active materials, such as shape memory poly-
mers (SMP)19–22, hydrogels23 or composites24, have provided the capability to print shape-evolving products, and 
thus adds time as the fourth dimension to the printed structures, or 4D printing. Among active materials, SMPs 
exhibit excellent recoverability, easy tailoring of properties. More recently, 3D printing SMPs become available, 
making them a good fit for fabricating active structural systems with complicated geometries.

Here, we use 3D printed thermally responsive SMPs to create actively deployable tensegrities. Thanks to the 
aforementioned unique properties of tensegrity, our paradigm for creating self-deployable structures distin-
guishes itself from related attempts for reconfigurable structures20–25 in many aspects, such as superior volume 
expansion, design simplicity, resilience after deployment, and modularity. Figure 1A shows schematically the 
overall concept and the details of the design. The struts, which are made of SMP and are straight in their perma-
nent shape, can be programmed into compact shapes. They are then connected by elastic cables (Fig. 1A–a). Once 
the assembly is heated, the struts recover their original straight shapes. However, because of constraints imposed 
by the cables, self-stresses are generated in both cables and struts, and the loosely connected struts and cables can 
stand up and form a fully functional 3D tensegrity structure (Fig. 1A–b).

1School of Civil and Environmental Engineering, Georgia Institute of Technology 5142B Jesse W. Mason Building, 
790 Atlantic Drive NW, Atlanta, GA, 30332, USA. 2George W. Woodruff School of Mechanical Engineering, Georgia 
Institute of Technology 801 Ferst Drive MRDC 4104, Atlanta, GA, 30332, USA. Ke Liu and Jiangtao Wu contributed 
equally to this work. Correspondence and requests for materials should be addressed to G.H.P. (email: paulino@
gatech.edu) or H.J.Q. (email: qih@me.gatech.edu)

Received: 1 March 2017

Accepted: 26 April 2017

Published: xx xx xxxx

OPEN

mailto:paulino@gatech.edu
mailto:paulino@gatech.edu
mailto:qih@me.gatech.edu


www.nature.com/scientificreports/

2Scientific Reports | 7: 3511  | DOI:10.1038/s41598-017-03412-6

Results
Design and Demonstration.  To realize the aforementioned concept, we design the struts and cables and 
use 3D printing to implement our designs – Fig. 1A shows design details. The struts have tubular shapes with slit 
central portions so that they can be easily packed by bending (Fig. 1A–c). The two ends of the struts are designed 
with arrowheads to help mounting the cable network. Struts are printed by an acrylate-based photopolymer, named 
Verowhite, which is one of the model materials in our multimaterial 3D printer (Objet 260 Connex) and is a SMP 
with the glass transition temperature (Tg) around 60 °C19, 25. The printed struts are then heated to a temperature 
(65 °C) above its Tg for programming. We first flatten the central portion (Fig. 1A–d) then bend it into a W-shape 
to enable favorable compaction (Fig. 1A–e). Finally, we lower the temperature to 10 °C and the struts are fixed in 
the W-shape (Fig. 1A–f). For the cables, because they form a continuous network12, 14, we design them (Fig. 1A–g)  
according to the structural topology and print them using an FFF (Fused Filament Fabrication) printer with Filaflex, 
which is a stretchable elastomeric filament material. The nodes in the cable network are designed with small holes 
so that they match the arrowheads of the struts. Finally, we attach the cable network with programmed struts 
(Fig. 1A–a). Up to this step, the tensegrity structure gains its topology but not its geometry; it is unconstrained in 
configuration and thus could be tightly packed into an arbitrary shape. We then increase the temperature to deploy 
the structure. Fig. 1B and Movie S1 show the deployment when the assemblage is thrown into a tank of hot water 
at ~65 °C. As the struts recover their original straight shapes, cables are stretched and self-stresses grow within the 
system. This renders “life” to our tensegrity, i.e. it stands up, to reach its designated geometry, resulting in a giant 
configurational change, although it had never been built to this shape before.

Figure 1.  Procedure for creating an active tensegrity. Deployment of an active tensegrity is based on the shape 
recovery property of shape memory polymers (SMP). (A) Schematic of the overall concept and design. (a) The 
struts, which are programmed to compact shapes, are connected by a network of elastomer cables. (b) Upon 
heating, the recovery of the struts to their straight shapes leads to actuation of the structure to a 3D resilient 
tensegrity structure. To achieve this concept, (c) the struts are designed to have tubular shapes with longitudinal 
slit portions and are 3D printed using SMPs; (d,e) the SMP struts are folded into compact shapes at a temperature 
that is above the glass transition temperature (Tg) of the SMP; (f) decreasing the temperature below Tg fixes the 
struts in the compact shapes, which are then assembled with the elastomer cables (g) according to the topology 
of the design to form a loose assembly (a); heating the assembly to a temperature above Tg leads the struts to their 
original shapes, and thus the constraints from the cables induce self-stress. As a consequence, a stable tensegrity 
structure is obtained. (B) The experimental result shows the deployment process. The scale bars represent 15 mm.
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Theoretical Analysis.  The mismatch between the initial lengths of the struts and cables is critical for deter-
mining the self-stresses, which in turn dictate if the deployment can be successful and the stiffness of the tenseg-
rity is enough (see SI for details). In general, neither too small nor too large self-stresses can deploy the structure. 
This is because too small self-stresses would not provide enough stiffness to support the total weight, but too large 
self-stresses would prevent the strut from a full recovery. Therefore, it is important to design proper initial lengths. 
Toward this end, we conduct theoretical analysis of the self-stress generated during and after the strut recovery to 
gain insight (see SI). We also conduct finite element (FE) simulations to confirm our theoretical analysis. Fig. 2A 
and B show the comparison between the experiment and the FE simulation of the shape change of a strut during 
a free recovery (Movie S2). Fig. 2C shows the opening angles (defined in the inset) measured during the recovery. 
Overall, the FE simulation results match the experiments reasonably well. The difference mainly comes from the 
uncertainty from experimental measurement, which is a challenge due to the dynamic nature of the free recovery. 
To estimate the maximum self-stress beyond which a deployed strut will buckle, we conduct a compression test to 
measure the critical force (Fig. 2D). In addition, by using the effective length ratio of 0.75, the estimated buckling 
load derived using the Euler buckling criteria is close to those in the experiment and the FE simulation (see SI). 
The FE simulation shows relatively large deviation after the peak force is reached because instability occurs in the 
post-buckling regime. Nonetheless, the peak force is the most important design parameter. Fig. 2E compares the 
theoretical estimation and the experimental result of the critical force in the strut during the recovery, i.e. when 
the cross-section is open. The critical force for a strut during its recovery is typically smaller than the Euler buck-
ling load after its recovery. On one hand, the different cross-sections lead to different elastic buckling loads. On 
the other hand, the energy level of deformation state before the buckling is high, so the system quickly buckles 
into the post-buckling state, which is a more energetically favorable state. Nevertheless, during the recovery, the 
system is driven by its internal energy following a low energy path, which gives a lower force. This difference in 
the buckling force and the recovery force is beneficial; this is because the low recovery force makes the recovery 
relatively easy and the high buckling force can prevent the deployed tensegrity structure from buckling.

Hence, for our design of struts, the critical force shown in Fig. 2E determines whether a strut can successfully 
deploy when assembled in the tensegrity system. Based on the theoretical and FE analyses, we choose the initial 
lengths to be 70 mm for the strut, 49 mm for the horizontal cables, and 45 mm for the tilted cables (see SI). This 
design yields a maximum compression force in the struts to be 0.15 N, about half of the minimum critical force 
(i.e. the recovery force) of the strut. A compression test is applied on the final structure. By matching the initial 
stiffness with theoretical predictions, we can inversely determine the magnitude of the induced self-stresses. We 
achieve approximately a maximal compression in the struts around 0.20 N, larger than the designed value, but 
still less than the critical forces.

Reduced Degree-of-Freedom Design and 3D Structures.  In our design, the cables are loose before 
deployment and the folded struts are free to move in space. Such excessive degrees-of-freedom may lead to incor-
rect positioning of struts and may create the risk of cable entanglement, or trap the structure at an undesirable 

Figure 2.  Properties of the slitted tubular struts via 3D printing. (A) The snapshot images of the free recovery 
sequence of a strut at 65 °C. (B) The predictions from the corresponding finite element method (FEM) 
simulation. (C) The opening angles of the strut during the free recovery and the comparison with the FEM 
simulation. The inset shows the definitions of the two opening angles. (D) The critical load of a single strut 
during uniaxial compression from the experiment and the FEM simulation. The inset shows the experimental 
setup. Considering the boundary condition in the experimental setup, a 0.75 effective length ratio gives the 
upper bound on the critical buckling load of a single strut. In practical designs, because the joints in our 
tensegrity are almost free in rotation, 1.0 effective length shall be used. (E) The critical load of a single strut 
during its recovery. Derivation for the analytical prediction is elaborated in SI. In the experiment, a small initial 
displacement (1 mm) is imposed to prevent the opened cross section from closing.
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configuration by (Fig. S7). To overcome such drawback, we reduce the degrees-of-freedom of the undeployed 
structure. One approach is to take advantage of the decoupled hierarchies and reduce the number of packed 
struts, i.e., leaving some struts straight. In this way, the tensegrity deployment becomes more deterministic, while 
the structure can still be stored in a compact state that occupies much less space than its deployed configuration. 
This design concept is illustrated by the 6-strut spherical tensegrity shown in Fig. 3A, where three of the struts are 
deprogrammed and are made partially solid to have an eccentric center of gravity, which stabilize the structure 
against gravity as it stands up. Such a design leads to successful deployment (Movie S3).

Our active tensegrity can be used to form 3D structures with surfaces that can serve as a platform to host 
functional devices. As a demonstration, we attached elastomer membranes (Fig. 3B and C) on the previous 6-strut 
tensegrity. On both discrete and continuous surfaces (Fig. 3B and C, respectively), we printed the “GT” (Georgia 
Tech) logo; it is not hard to imagine that one can print electronic circuits, to take advantage of the gigantic 
shape-change and to enable functionalities of the structure. Movie S4 and S5 show the deployment processes. 
The configuration of the deployed surfaces depends on the base tensegrity. With some state-of-art form-finding 
approaches for tensegrity26–28, we can generate space covering surfaces of almost any geometry. In addition, the 
attached surfaces increase the reliability of the deployment, as they provide additional constraints and reduce 
arbitrariness during the deployment.

Sequential Deployment.  The development of digital materials in 3D printing allows us to print parts using 
polymers with different Tg’s, thus offering different shape memory characteristics that permit sequential shape 
changes20, 29. We take advantage of the digital SMPs and program the deployment sequence to further pursue com-
plex tensegrities in a controlled manner. Here, we choose three SMPs: DM-1 with Tg around 37 °C; DM-2 with Tg 
around 57 °C; and the SMP used in the above (Verowhite, termed as BM here) with Tg around 60 °C (see SI). We 
first create one 2-layer prismatic tower tensegrity (Fig. 4A), and one 3-layer tensegrity1, 30 (Fig. 4B), by using DM-1 

Figure 3.  Deployment of 6-strut spherical tensegrity. (A) Deployment of a spherical tensegrity using the partial 
folding strategy to improve reliability of deployment. (B) Positioning of three discrete pieces of surfaces into 
space. (C) Deployment of a continuous surface supported by the active tensegrity to form a tent. The resultant 
structural system mimics the fundamental structure of vertebrates, with the membrane as skin, elastic cables as 
muscles, and relatively rigid struts as the skeleton (biomimetics). The scale bars represent 15 mm.
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and BM, to demonstrate the capability of the programmed deployment. The struts with different materials are 
programmed in the same manner as shown in Fig. 1. They are then assembled with the elastomer cable networks. 
Fig. 4A–1 and B–1 show the unactuated shapes of the structures. As there are no self-stresses, they lay on the 
ground. To activate the structure, we first increase the temperature to 40 °C by submerging the structure in a hot 
water bath. As shown in Fig. 4A–2 and B–2, the struts made by DM-1 recovered first, forming partially deployed 
tensegrity structures, with the right and middle parts not activated in Fig. 4A–2 and B–2, respectively. Finally, 
we increase the temperature to 65 °C to deploy the struts made with the BM, as shown in Fig. 4A–3 and B–3.  
The deployments of the two tensegrities are recorded in Movies S6 and S7.

To further demonstrate control over the deployment sequence, we prepare a three-layer structure with DM-1 
DM-2, and BM (Fig. 4C). To deploy the structure, we increase the temperature in three steps: first to 40 °C, then 
to 57 °C and finally to 65 °C. Fig. 4C–2 to C–4 shows the sequential deployment (Movie S8). Because the glass 
transition temperatures of DM-2 and BM are close, the distinction between the actuations of the middle layer and 
the right layer are not very clear; better distinction can be achieved if more digital materials were available with 
more distinguishable Tgs.

Mechanical Behaviors of Tensegrity.  The obtained tensegrity structures allow elastic deformation to a 
significant amount of magnitude without fracture or yielding. Figure 4D shows a compression test of the 3-layer 
structure in Fig. 4C. Since the stiffness of the cables is much lower than the struts (see SI), the global deformation 
of the tensegrity is mainly carried by local deformation of the elastomer cables. The plateau in the loading curve 
and the small dip in the unloading curve in Fig. 4D are caused by the inherent multi-stability feature of this 
tensegrity design. By matching the initial stiffness with theoretical predictions (Fig. S1), we can inversely approx-
imate the magnitude of induced self-stresses. The calculation and estimation for other tensegrity structures in 
Fig. 4 can be found in Fig. S8.

Discussion
The tensegrity in our design paradigm consists of two hierarchies: the first hierarchy is the compaction and 
recovery of individual struts; the second hierarchy is the final geometry of the tensegrity, i.e. the global struc-
ture. Therefore, the final configurational change is composed of both material-induced shape change and 
topology-induced shape change. The second hierarchy amplifies the first hierarchy to achieve gigantic volume 
expansions. Furthermore, these two hierarchies are decoupled, i.e. the final tensegrity does not depend on how 
we design and compact the strut (the first hierarchy). Therefore, other designs of the struts, such as different 

Figure 4.  Programmed deployment of layered tensegrity structures. (A) Programmed deployment sequence 
of the 2-layer tensegrity using 2 different SMPs for the struts [DM-1 (the dark grey material) and BM (the 
white material)]. (B) Programmed deployment sequence of the 3-layer tensegrity using 2 different SMPs for 
the struts [DM-1 (the dark grey material) and BM (the white material)]. The two end layers have struts made 
with SMP of a lower Tg than the middle layer. (C) Programmed deployment sequence of the 3-layer tensegrity 
using 3 different SMPs for the struts. The three SMPs have increasing Tg’s from left to right. The darker the color, 
the lower the Tg. (D) Compression test of the deployed 3-layer tensegrity made with 3 different SMPs. The test 
reveals a maximum compression in the struts around 0.12 N. The scale bars represent 15 mm.
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cross-section shapes or programed shapes can be used. In this paper, our design of each strut is inspired by the 
storable tubular extendable member (STEM)31 usually used on satellites. Such a design provides a relatively high 
critical force after recovery. The slit design enables favorable deployments. However, this is not the only design 
alternative and thus one can design the strut based on other considerations20, 23, 24. As shown above, we avoid spe-
cialized design and dedicated fabrication for every new active structure, but can apply components of the same 
design to create different structures by varying combinations, in a way similar to the LEGO toy, which opens a 
new venue that allows for quick fabrication of 3D active structures through modular designs. We can also recycle 
the struts to save material and reduce waste.

In retrospect, we create a method for realizing active tensegrity by combining 3D printing with actuation to 
deploy 3D structures that respond to environmental stimuli. Our paradigm of active tensegrity is unique and 
novel as it integrates the complementary features of tensegrity structures and smart materials, merging the fron-
tiers of structural mechanics and material science. The intriguing properties of tensegrity allows the active deploy-
ment to have two decoupled hierarchies: programming the SMP struts into compact shapes, and the topology of 
the actual tensegrity. Such a decoupling strategy leads to gigantic shape change, allows for modular design, and 
provides rich programmability and tunability. The struts are allowed to have others shapes and be programmed 
into a compact shapes so that they can be assembled with the elastomer cables according to the topology of the 
tensegrity. The active tensegrity structures can be programmed to deploy in a sequential fashion by differentiating 
the glass transition temperatures of the SMPs used for the struts. Further enrichment includes, for example, using 
shape memory composites22 to achieve finer control of shape change, or using materials such as hydrogels23, 24  
to design the structure to respond to different types of environmental stimuli. In addition, surfaces, which could 
be used as a platform for integrating functionality, can be attached to the nodes in the tensegrity to enable active 
devices with dramatic property changes. Therefore, our paradigm of active tensegrity offers a platform for generic 
devices/applications that can benefit from the gigantic shape changes reported in the present research. With 
unique properties of tensegrity and remote controllable actuation by temperature, we can foresee the great poten-
tial of active tensegrity in various applications. For example, tensegrity structures have been successfully exploited 
as deployable antenna and reflectors on satellites, for example, contractible reflector for a small satellite that can 
be packaged within an envelope32, 33. Another application is the tensegrity robot for locomotion and duct sys-
tems34, 35. In addition, Carpentieri et al. recently provides a method to use the minimal mass deployable tensegrity 
for solar energy harvesting on water canals36. These traditional applications of tensegrity usually need mechanical 
drivers to deploy. Now, empowered by SMP, the active tensegrity structure is self-deployable, with the capability 
to adapt automatically to environmental changes. The active tensegrity may also be applied for biomedical pur-
pose, such as stent7, 37, 38. A stent is a type of flexible tubular device for minimally invasive surgery. It is capable 
of being folded into small dimensions and then deployed to open up a blocked lumen. The active tensegrity 
could be suitable for self-deployable stent which deploys under human body temperature once inserted. There 
are various tensegrity designs that approximate tubular shapes12. In addition, as we showed in this paper (Fig. 4D, 
Fig. S8), deployed active tensegrity structures have great resilience to undergo large elastic deformations, which 
is a desired feature for biomedical devices so that the stent can also adapt to the deformation of human tissues.

Methods
Sample fabrication.  The slitted tubular struts were fabricated using an Objet 3D printer (Objet 260 Connex, 
StrataSys Inc, Eden Prairie, MN, USA) in digital material mode using the PolyJet technology. The printer can 
combine two base materials, using pre-determined ratios to make the so-called digital materials. The digital 
materials differ in mechanical and thermal properties. The curable liquid photopolymer was jetted onto the build 
tray and then cured by UV polymerization. The three digital materials used in this paper are Verowhite plus, 
DM9895 (DM-1) and DM8530 (DM-2) in Stratasys material library. The cables were fabricated using the Fused 
Filament Fabrication (FFF) technology on a HYREL 3D Printer (System 30 M, Hyrel 3D Inc, Norcross, GA, USA). 
A rubbery material named Filaflex (Recreus, Elda, Spain) was used, which is a thermoplastic elastomer base 
polyurethane. The extruder was especially equipped with a dual drive system to fulfill the task of printing flexible 
filaments. The filament was melted at ~232 °C and deposited through a nozzle of 500 µm diameter onto the tray. 
The cable nets were printed by two passes of reversed orientation. The extrusion paths were optimized to ensure 
the quality of the printing.

Deployment control.  A water temperature control system was built, which includes a glass water tank, a 
DC hot water pump, a water heater, an electrical thermometer, and plastic tubes. The tank held some cold water 
(~10 °C) at the beginning of each experiment. The level of the cold water submerged the undeployed tensegrity 
assemblies. To activate the deployment, hot water (~95 °C) was pumped from the water heater into the tank to 
increase the temperature of the cold water, which is monitored by an electrical thermometer. In the programmed 
deployment test, we stopped injecting hot water once the water reached the desired temperature. After the whole 
tensegrity deployed, we were able to drain the water from the tank.

Compression tests of the deployed tensegrity.  We performed the compression tests of the deployed 
tensegrity structures using an electromechanical universal material test machine (MTS Criterion® Series 40, 
Eden Prairie, MN, USA) at room temperature (~25 °C). The deployed tensegrity was placed on a flat stage and 
then compressed by another flat plate mounted to the load cell. The stage and plate were lubricated to reduce 
friction. The compression loading rate was set to be 0.2 mm/s. The forces and displacements were recorded at a 
10 Hz sampling rate, and a load cycle was performed. The unloading commenced when the global deformation 
(compression) reached half the height of the tensegrity.
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Materials and Methods 
 
Material characterization: A dynamic mechanical analysis (DMA) machine (Model Q800, TA 

Instruments Inc, New Castle, DE, USA) was used to characterize the mechanical and 

thermomechanical properties of the materials. The viscoelastic properties of the printed SMPs 

were measured in the film tension mode. The material samples (dimension 10mm×3mm×1mm) 

were first heated to 90°C on the DMA machine and stabilized for 10 minutes to reach thermal 

equilibrium. A preload of 0.001N was applied to straighten the samples. During the DMA tests, 

the strain of the samples was controlled to oscillate at a frequency of 1 Hz with a peak strain 

amplitude of 0.1%. Meanwhile, the temperature decreased from 90°C to 0°C with a rate of 

2°C/min. The glass transition temperature Tg is identified by the temperature when the 

viscoelastic loss tangent (tanδ) reaches its peak value. The Tg’s of the three strut materials are 

60°C (BM: Verowhite plus), 37°C (DM-1: DM9895), and 57°C (DM-2: DM8530).  
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The stress-strain behavior of the cable material was tested in controlled force mode on the DMA 

machine at room temperature (~25°C). A complete load cycle was performed at a very low speed 

(quasi-static) on a sample with dimensions 10mm×0.9mm×0.25mm. The printed sample was 

stretched to 3.1 MPa at loading rate of 0.5 MPa/min and then unloaded. The initial tangent 

elastic modulus was determined to be 16.43MPa from the stress strain curves (see Figure S5). 

Supporting Text 

 
S1. Analysis of self-stressed tensegrity structures 

Based on the design, linear analysis of self-stressed tensegrity helps us to correlate the 

initial tangent stiffness of the tensegrity structure to its self-stress level. Considering the small 

strain due to self-stress, we treat the strut material as linear elastic and take the initial modulus 

for the calculation to simplify the design process. The governing equation takes the form of a 

linear equation =Ku F , where K  is the stiffness matrix, u contains the nodal displacements, and 

F  contains the applied forces. Due to the self-stress, the stiffness matrix for a tensegrity structure 

is different from a normal truss structure1,2. The major difference is the additional contribution of 

the geometrical stiffness matrix GK . Thus the tangent stiffness matrix takes the form: 

 E G= +K K K , (S1) 
where, EK  is the linear stiffness matrix. For completeness, we summarize the derivation of GK  

here. Assume that for a member (either a cable or strut) i , its two nodes, length and self-stress 

induced force are a , b , iL  and iT , respectively. We define the components of a connectivity 

matrix C  as:   

 

1,     if member  is connected to node , and 
1,  if member  is connected to node , and 

0,    otherwise
ij

i j j a
C i j j b

=ì
ï= - =í
ï
î

. (S2) 
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We also define a diagonal matrix Q  such that: 

 ii i iQ T L= . (S3) 

The ratio i iT L  is known as the force density2. Let T  be the normalized self-stress induced force 

vector with maximum compression in struts equal to 1. Denoting γ as a scaling factor (which 

equals to the maximum compressive force in struts), we can rewrite Q  as: 

 g=Q Q, (S4) 

where ii i iQ T L= . Because T  is an intrinsic property of a tensegrity design, it is a constant vector. 

Thus, we can write the so-called force density matrix 2 as: 

 T Tg= =E C QC C QC. (S5) 

Since the strains of the members caused by the self-stress are small, the geometric stiffness 

matrix can be expressed as: 

 3 3G Gg´= Ä =K E I K . (S6) 

Finally, with the contribution of the linear stiffness matrix, the stiffness matrix of the 

tensegrity structure can be approximated for small deformation as: 

 ( ) E Gg g= +K K K . (S7) 

From the above derivation, we can see that the stiffness matrix of a tensegrity is a function of its 

self-stress level γ. We find that the higher the self-stress, the stiffer the tensegrity. Using this 

equation, we can find the relationship between the initial tangent modulus of a tensegrity under 

global uniaxial compression and the self-stress level γ. The initial tangent modulus is the ratio of 

the applied force over the compression magnitude (in terms of displacement). Figure S1 plots the 

curve of initial tangent modulus versus self-stress level, based on the material properties for 3 

tensegrity designs. The tangent modulus shown here is calculated using the non-dimensional 
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displacements, which is the downward compression displacements normalized by the heights of 

the tensegrity designs, and thus, the unit of the tangent modulus is in Newton (N). The two 3-

layer tensegrities (with different materials) yield almost identical curves, so only one is plotted 

for clarity. This curve does not start from (0,0) because the 3-layer tensegrity is kinematically 

determinate, thus its stiffness matrix is not singular when there is no prestress ( (0) E=K K ). 

According to the experimental compression tests of the active tensegrities, we can approximate 

the initial tangent modulus of a tensegrity. Then, based on the curves shown in Figure S1, we can 

inversely estimate how much self-stress we have successfully applied to the active tensegrity. 

 
S2. The two critical loads for the slitted tubular struts 

From the previous section, we can see that the (initial) stiffness of a tensegrity structure 

depends on the self-stress level. However, the achievable self-stress level of an active tensegrity 

is not arbitrary, as it is determined by two critical factors. The first factor is that the compression 

on struts should not prevent their full recovery. In the final stage of deployment, some SMP 

struts in the active tensegrity will be subject to compression before full recovery, with their 

tubular cross-section still open. The second critical factor is that, after deployment, the struts 

should not buckle under the self-stress compression. If the struts buckle, then the tensegrity will 

lose some self-stress and cannot completely reach the designated shape. In the following, we will 

derive analytical estimations of these two critical strut loads. We first compute the critical force 

during the recovery, when the tubular cross section of a strut is open, as shown in Figure S2a. 

We make the following assumptions: (1) a tube can be analyzed using shell theory because the 

thickness is relatively small; (2) the mid-surface is subject to isometric deformation; (3) the 

static behavior of the SMP can be regarded as elastic when the temperature is fixed and the 

strain is relatively small. The meaning of the symbols used in the derivation is illustrated in 
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Figure S2. Therefore, supposing that the changes in the curvatures along the two principle 

directions are ( 1 r- , 1 R ), we can write the total strain energy at the bending region as3: 

 2

1 2
2B

D R rU
r RR

a y næ ö= + -ç ÷
è ø

. (S8) 

The symbol D  denotes the flexural rigidity, defined as: 

 ( )
3

12 1
EtD

n
=

-
, (S9) 

where E is Young’s modulus and ν is Poisson’s ratio. The value of r is determined when UB is 

minimized3. Therefore, r=R. Then the bending moment is calculated as: 

 ( )1BUM Da n
y

¶
= = -
¶

. (S10) 

At the final stage of the strut’s recovery, a single kink about a quarter from the end of a strut is 

usually observed (see Movie S3). Thus, we can draw the shape schematically as shown in Figure 

S2c. The regions that are not opened are much stiffer than the bending region. Therefore, we 

may treat those regions as rigid. Notice that, 

 1 2sin (1 ) sinL Ll q l q= - . (S11) 

If the two applied forces are aligned along the same line, then equilibrium is obtained as: 

 ( )1 1sin coscrM F L Rl q q= + . (S11) 

Thus the critical force can be calculated by: 

 
3

1 1 1sin cos 12( )cr
M EtF

L R L R
a

l q q l q
= ³

+ +
, ( 10 2q p< < ). (S11) 

In our case, the typical value for l  is around 0.25. The angle 1q  can be computed from the 

deformed length of the strut ( 1 2cos (1 ) cosL Ll q l q+ - ). The equality holds when 1q  is small. The 

later expression is used because it is simple and conservative. The derivation requires a portion 

with fully opened cross section along the strut (which forms a “kink”), thus it is not accurate 
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when the strut is almost straight (i.e. 1q  becomes very small), because in reality the opened cross 

section starts to enclose before the strut recovers to straight, so the deformation mode no longer 

has a “kink”. 

The critical load before the buckling of the struts after deployment is given by the Euler 

buckling formula4,  

 
2

2
min

buckling
eff

EI
F

L
p

= . (S12) 

The effective length Leff depends on the boundary conditions of the strut. In the compression 

tests, the fixture of the sample constrains the free rotation at the two ends, resulting in an 

effective length around 0.75L. However, in the tensegrity, the two ends are assumed to be 

pinned, and thus Leff = L. The minimum static moment of inertia Imin is determined to be the 

static moment of inertia of the X-X axis at the geometric centroid GC, which is denoted as IGC-XX,  

 ( ) ( )
( )

2
3

2

sin 2 sin
2 22

GC XXI R t
aa aa p

a
-

é ù
= + - +ê ú

ê úë û
. (S13) 

We note that, in the experiment, the struts are not loaded at the geometric center (GC) of the 

cross section. Instead, the compressive forces are loaded at point O (at the center of the mid-

surface circle). As a consequence, the actual critical buckling force will be lower than the 

estimation, since the buckling mode involves a combination of bending and twisting. 

 
S3. Design of cables 

As explained in our paper, the self-stress in the tensegrity is induced by prescribed length 

differences between cables and struts. We assume that after successful deployment, the struts 

become straight and their deformation under compression is negligible (recall that the struts are 

much stiffer than the cables). Therefore, we control the level of self-stress magnitude by 
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manipulating the initial length of cables. We did this for two reasons. First, we do not want the 

initial length of cables to be too long so that the deployed tensegrity cannot gain enough self-

stress to become stable and stiff. Second, the initial lengths of cables should not be so short that 

the struts cannot recover during deployment or stay straight after deployment, due to the 

excessive self-stress magnitude. 

Suppose that the desired self-stress level is γ and member i is a cable. Given the normalized 

force vector T  (as defined in Section S1), we can determine the initial length of a cable as: 

 0
2

2
( ) ( ) 1

d

i cT AE
d

d
g

-
= +

+
. (S14) 

In this equation, 0  denotes the initial length, d  is the design length of the cables which is 

pulled from the geometry of the tensegrity design, iTg  is the desired tension in the cable, A  is the 

cross-sectional area of the cable, and d  is the ineffective length at each end of a cable which 

changes very little. Considering the contact angles of cables and struts, d  is generally 1.4~3 

times the distance d shown in Figure S3. Typically, the force is small, and we can assume linear 

behavior for the cables. Hence the initial elastic modulus cE  is used. 

Such calculation provides an approximate guide for determining the initial lengths of cables 

based on the value of γ, which needs to be greater than 0, but less than the minimum critical load 

of the strut. In reality, the control of the self-stress level and final geometry will not be precise 

due to many practical factors, for example: the twisting of cables, the plasticity of the cable 

material, the printing accuracy, and the entanglement of the cables near the joints. In some cases, 

adjustment based on the experimental results is needed, especially for tensegrity designs with 

complex geometries. 

 

S4. Detailed experimental analysis 
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The shape recovery behavior of the strut comes from the viscoelastic properties of the 

SMPs. The DMA tests are performed to investigate the viscoelastic properties of the printed strut 

materials. The storage modulus and loss tangent tan δ vs. temperature plots of the printed three 

strut materials are shown in Figure S4.  

The Filaflex material exhibits rubber-like viscoelastic properties at room temperature. 

Uniaxial tension tests are performed to investigate the mechanical properties of the printed 

Filaflex material. The stress vs. strain curve is shown in Figure S5. The specimen occupies the 

same cross section as the cables, which is a rectangle of 250µm-thick and 920µm-wide. The 

uniaxial stretch is up to ~40% of the initial length. 

 

S5. Constitutive model for the SMP 

The multi-branch model is used to describe the viscoelastic properties of the printed SMP 

materials. In this model, one elastic equilibrium branch and several thermo-viscoelastic non-

equilibrium branches are arranged in parallel. The non-equilibrium branch is described by the 

Maxwell element, represented by a viscous damper and an elastic spring connected in series. The 

total stress of the material can be expressed as: 

 ( )0
1 1

= exp
n n t tm m

total Eq non Eq non s
m m m

e dtE e E ds
s T

s s s
t= =

é ù¢¶
= + + -ê ú

¶ ê úë û
å å ò ò , (S15) 

where EqE  is the Young’s modulus of the equilibrium branch and both m
nonE and mt are the 

Young’s modulus and temperature dependent relaxation time of the m-th non-equilibrium 

branch. To consider the temperature effects, the time temperature superposition principle (TTSP) 

is used. The relaxation time mt  at temperature T can be calculated using the relaxation time R
mt  at 

the reference temperature, given by: 
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 ( ) ( )Shift R
m mT a Tt t= , (S16) 

where ashift(T) is the time temperature superposition shifting factor. According to O’Connell and 

McKenna5, the shifting factors can be calculated by combining the Williams-Landel-Ferry 

(WLF) equation 6 and the Arrhenius-type equation 7.  If the temperature is higher than the 

reference temperature, the shifting factor can be expressed using the WLF equation: 

 ( )
( )
( )

1

2

log ,refshift
ref

ref

C T T
a T T T

C T T

-
é ù = - >ë û + -

. (S17) 

The parameters 1C , 2C  and refT  are material parameters to be characterized by experiments. We 

denote A, Fc, and Boltzk  as the material constant, configurational energy, and Boltzmann’s 

constant, respectively. When the temperature is lower than the reference temperature refT , the 

shifting factor is expressed by the Arrhenius-type equation:      

 ( ) 1 1ln ,shift c
refBoltz

ref

AF
a T T T

T Tk
æ ö

é ù = - - <ç ÷ë û ç ÷
è ø

. (S18) 

The parameters including eqE , non
mE , R

mt , 1C , 2C  and Boltz
cAF k  are determined from the DMA 

tests. The storage modulus at high temperature (90˚C for BM, 65˚C for DM-1, 85˚C for DM-2) is 

the equilibrium modulus eqE  for each of the materials. For the multi-branch model, the 

temperature dependent storage modulus ( )sE T , loss modulus ( )lE T  and loss tangent ( )tan Td   can 

be respectively computed by: 

 ( )
( )
( )

22

22
1 1

nonn
m m

s eq
m m

E T
E T E

T

w t

w t=

é ùë û= +
+ é ùë û

å , (S19a) 

 ( ) ( )
( ) 22

11

nonn
m m

l
m m

E T
E T

T

wt

w t=

=
+ é ùë û

å , (S19b) 
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 ( ) ( )
( )

tan l

s

E T
T

E T
d = . (S19c) 

The symbol ω denotes the test frequency.  By employing a nonlinear regression software 8,9, the 

parameters non
mE , R

mt , 1C , 2C  and AFc/k can be determined by fitting the tand  and storage modulus 

from experimental DMA tests. The material parameters used in this paper are provided in Table 

S1. 

To show the capability of this model, the comparison of the DMA curves between the 

experiment and the simulation are shown in Figure S6. We can see that the multi-branch model 

explains the thermomechanical behavior of the printed strut materials in the temperature range 

used for programming and actuation processes. 

 
S6. Finite element analysis 

The recovery process and mechanical properties of struts are modeled using the FEA 

software ABAQUS (Simulia, Providence, RI, USA). The hybrid C3D8RHT element is used. We 

implement the multi-branch model based on Prony’s series, which is defined as: 

 /

1

( ) m

n
t

Eq m
m

G t G G e t-

=

= +å , (S20) 

where G is the total shear modulus, GEq and Gm are the shear modulus of the equilibrium branch 

and m-th non-equilibrium branches. Applying the incompressible condition, the shear modulus G 

is calculated as Gm=Em/3, where Em is the elastic modulus from the multi-branch model. The 

material parameters for the multi branch model are elaborated upon in Section S5. To apply the 

temperature effects, the shift factors are calculated using the WLF equation and Arrhenius-type 

equation6,7. The UTRS subroutine is used to implement the WLF equation and Arrhenius-type 

equation.   
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Considering the symmetry of the strut and boundary conditions, only 1/4 of a strut is used 

for simulation of free recovery. The slit of the strut is first opened into a nearly flat configuration 

in the middle part of the strut at 65°C, which is above the Tg of the BM (Verowhite). The 

pressure used to open the slit is applied on the inner surface of the slit near the opening. After the 

slit is opened, we fix the middle section of the strut (one end in the 1/4 model) and add a pressure 

load on the end of the strut and in the transverse direction of the strut to bend it into a “U”-shape. 

To further deform the strut into the “W”-shape, we fix the 1/4 section of the strut and apply 

pressure at the end in the opposite direction of the previous step. After the deformation process is 

finished, we cool the temperature to 25°C, at which the material is in a glassy state. Then all the 

external loading and constraints are removed, and the deformed shape of the strut is “frozen” due 

to viscoelasticity. To simulate the recovery process, the temperature is increased to 65°C. The 

recovery process by the simulation is compared with the experimental results, as shown in Figure 

2.  

The strut under compression is also modeled to determine the after-recovery critical force 

(Fbuckling). In this simulation, the whole strut is modeled to consider asymmetric deformation 

modes. We impose an ambient temperature of 65°C. One end of the strut is pinned in directions 

x, y, z within the central zone (radius of 1mm), creating a partially fixed end. At the other end, 

the center zone is pinned in x, y directions (partially fixed), and a displacement load of rate 

0.25mm/s is applied in the -z direction. This boundary condition is similar to the case of the strut 

compression experiment, but more restrictive than the actual boundary condition as embedded in 

the tensegrity structures. 

A similar procedure can be applied to predict the mechanical performance of struts made 

with various SMPs. 
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Figure S1. Initial tangent modulus vs. maximum self-stress forces in struts. 

 

 
Figure S2 (A) Schematic of a folded strut with opened cross section. (B) Cross section (A-A) of 
the struts. (C) Sketch of the critical scenario in the recovery of struts (during the deployment of 
an active tensegrity), based on observations from the experiments. 
 

 
Figure S3 Schematic of the cable network design. 
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Figure S4 (A) Storage modulus vs. temperature curves for three SMPs. (B) Loss tangent tan δ 
vs. temperature curve. 
 
 

 
Figure S5 The stress-strain curve of Filaflex material at room temperature (~25°C). 
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Figure S6 Comparison of the DMA curves between experimental data and numerical models for 
three SMP materials used in this paper. 
 
 
 

 
Figure S7 Failed deployment of a 6-strut spherical tensegrity, due to physical contact between 
struts, as highlighted by the red circle. As discussed in the main text, when the cables are loose, 
the folded struts are almost free to move in space. In this example, a strut blocks the recovery of 
another strut. 
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Figure S8 The compression tests on the two-layer tensegrity and the three-layer tensegrity, 
whose struts are made with two SMPs. (A) Compression test of the resultant deployed 2-layer 
tensegrity using 2 different SMPs for struts (BM and DM-1). The red line indicates the loading 
process while the green line indicates the unloading process. Estimated maximal compression 
equals 0.12N. (B) Compression test of the deployed 3-layer tensegrity made with 2 different 
SMPs (BM and DM-1). Maximal compression in the struts is estimated to be around 0.14N. The 
three-layer tensegrity shows two dips in both the loading and unloading process. This is due to 
the inherent multi-stability behavior of such structures. That is, the structure has a multiple local 
minima of stored energy at different configurations. For example, when one layer of the tower is 
fully flattened, the structure is at an alternative stable state (other than the fully deployed 
configuration). Due to the contact of struts, the other stable configurations cannot be reached. 
However, it still leads to a reduction in stiffness of the structure (snap through). The 3-layer 
tensegrity in B illustrates this effect more clearly than the one in Figure 4D of the main content 
because the structure in A has more DM-1 struts, which are less stiff than DM-2 and BM struts 
in room temperature (~25˚C). Thus, when a contact between struts happens, the DM-1 struts will 
bend, leading the structure slightly closer to the ideal alternative stable configuration, although 
this state cannot be fully reached. 
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Table S1. 
Material parameters for the multi branch model. 
   

 Verowhite DM9895 DM8530 
Branch Enon (MPa) τi Enon (MPa) τi Enon (MPa) τi 
E1 148.7076 2.00E-08 300 0.0001 170 1E-07 
E2 119.7517 4.27E-07 275 0.000657 188 9.93E-07 
E3 131.9798 5.47E-06 296 0.003872 212 0.00001 
E4 147.1372 5.89E-05 305 0.02 239 9.08E-05 
E5 282.3444 0.000547 350 0.1 268 0.00074 
E6 320.9668 0.004524 378 0.576863 293 0.005374 
E7 354.2126 0.032439 292 3.401616 308 0.035368 
E8 427.2871 0.2 215 20 291 0.2 
E9 178.2132 1 147 96.82391 285 0.954957 
E10 143.8276 3.250259 95.213467 362.9461 138 3.182197 
E11 151.2221 9.451896 63.12765 1000 162 7.497457 
E12 162.8788 30.23741 62.0921 2671.527 178 25.11365 
E13 162.4149 100 52.099306 7912.87 153 87.11596 
E14 151.456 315.2367 42.374719 23498.79 133 283.7953 
E15 141.8913 927.9366 35.205449 71461.38 122 905.6253 
E16 111.7587 8849.219 27.897552 228551.6 112 3025.975 
E17 140.7818 2849.202 20.760769 726401 98.09554 10000 
E18 81.89721 25294.7 15.532429 2277776 83.26095 32677.22 
E19 52.68197 72900 11.281878 7091525 65.70456 96510.16 
E20 12.47854 653520.3 8.305791 21997171 59.12021 267333.4 
E21 28.03173 213000 5.959708 68236585 51.92218 773277.7 
E22 1.712558 5370000 4.351312 2.08E+08 44.76933 2339554 
E23 4.830405 2000000 3.329757 6.41E+08 34.59949 7613180 
E24 1.197657 85400000 2.644468 2.07E+09 21.72712 26070126 
E25 1.383214 20000000 2.196711 7.07E+09 9.995279 1E+08 
E26 0.000183 3.61E+08 1.578065 2.4E+10 2.916758 5.22E+08 
E27 2.537188 2E+09 0.1070122 1E+11 0.957138 5.77E+09 
Eeq (MPa) 10.4 3.30 7.5 
Tg (˚C) 60 38 57 
Tref (˚C) 22 -3 17 
C1 17.44 17.44 17.44 
C2 66.35 42.1 50.5 
AFc/k -23000 -23000 -24000 
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Movie S1 Deployment of a 3-strut tensegrity. 

Movie S2 Numerical simulation of the free recovery of a single strut with the slitted tubular 
cross section. 

Movie S3 Deployment of a 6-strut spherical tensegrity, using the partial folding strategy. 

Movie S4 Deployment of a 6-strut spherical tensegrity with 3 discrete attaching pieces of 
surface. 

Movie S5 Deployment of a 6-strut spherical tensegrity with one continuous attaching piece of 
surface. 

Movie S6 Programmed sequential deployment of a 2-layer tower tensegrity, whose struts are 
made with 2 SMPs. 

Movie S7 Programmed sequential deployment of a 3-layer tower tensegrity, whose struts are 
made with 2 SMPs. 

Movie S8 Programmed sequential deployment of a 3-layer tower tensegrity, whose struts are 
made with 3 SMPs. 
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