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Abstract This paper proposes an efficient gradient-based
optimization approach for reliability-based topology opti-
mization of structures under uncertainties. Our objective is
to find the optimized topology of structures with minimum
weight which also satisfy certain reliability requirements.
In the literature, those problems are primarily performed
with approaches that use a first-order reliability method
(FORM) to estimate the gradient of the probability of fail-
ure. However, these approaches may lead to deficient or
even invalid results because the gradient of probabilistic
constraints, calculated by first order approximation, might
not be sufficiently accurate. To overcome this issue, a
newly developed segmental multi-point linearization (SML)
method is employed in the optimization approach for a more
accurate estimation of the gradient of failure probability.
Meanwhile, this implementation also improves the approx-
imation of the probability evaluation at no extra cost. In
general, adoption of the SML method leads to a more accu-
rate and robust approach. Numerical examples show that the
new approach, based on the SML method, is numerically
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stable and usually provides optimized structures that have
more of the desired features than conventional FORM-based
approaches. The present approach typically does not lead to
a fully stressed design, and thus this feature will be verified
by numerical examples.
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optimization

1 Introduction

Topology optimization helps engineers design structures
that provide most efficient use of material with desired
structural behavior. In recent years, topology optimization
has been applied to engineering problems in a wide range of
fields, for example, building design, vehicle design, material
design, and medical treatment (e.g., craniofacial recon-
struction) (Rozvany 2001; Bendsøe and Sigmund 2003;
Sutradhar et al. 2010). Most research has been formulated
in a deterministic manner, however, deterministic topology
optimization may have limited use for realistic design prob-
lems where the inherent uncertainties in loading conditions,
material properties and manufacturing process cannot be
neglected. There are two main strategies to address this con-
cern, namely robust topology optimization, and reliability-
based topology optimization (RBTO) (Schüeller and Jensen
2008). The goal of the robust topology optimization is to
find a structure that is relatively insensitive with respect to
uncertainties in design conditions or manufacturing process
(Schevenels et al. 2011; Zhao and Wang 2014). On the other
hand, the RBTO aims to account for the effect of uncertain-
ties on structural performance in terms of failure probability
during the topology optimization process. The advantage
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of the RBTO formulation is that it allows a quantitative
management of the uncertainties.

Topology optimization can be carried out in many dif-
ferent ways, for example, the density approach, the ground
structure approach, the level-set approach, etc (Bendsøe
and Sigmund 2003). The density approach as well as the
level-set approach aims to find the best material distribution
within a continuum (Bendsøe and Sigmund 2003; Talischi
et al. 2012). In this paper, the ground structure approach
is adopted because it provides directly the truss layout on
a base grid so that it is particularly suitable for design
of modular space structures (Topping 1992; Beghini et al.
2014), which is common for designs of building or bridge
structures. A typical ground structure approach extracts the
optimal structural layout from a very dense set of potential
joints and bars by sizing the members and allowing them to
vanish (Achtziger et al. 1992; Ben-Tal and Bendsøe 1993;
Sokół T 2011; Zegard and Paulino 2014).

As a design problem, the RBTO can be regarded as
a subtopic of the reliability-based design optimization
(RBDO), which has a rich literature. The RBDO per-
forms design optimization in conjunction with reliability
analysis by defining probabilistic constraints due to the
presence of random variables. The RBDO is typically per-
formed at two levels (Nguyen et al. 2010, 2011): compo-
nent reliability-based design optimization, which considers
each failure mode individually, and system reliability-based
design optimization, which deals with a combination of
failure modes simultaneously. A generic formulation for
component RBDO considering one reliability component
can be given as follows:

min
x

f (x)

s.t. Pf = ∫
G(x,u)<0 ϕn(u)du � P t

f

hk(x) � 0; k = 1, 2, 3, ...

where x is the vector of design variables to be selected in
the optimization process; u is the vector of random variables
that are transformed from the original distribution space to
standard normal space by a probability preserving transfor-
mation (Choi et al. 2006); f (x) is the objective function;
G(x, u) is the limit state function for structural behavior
such that for a given design x, a realization of u that makes
G < 0 is considered a failure event; ϕn(·) is the n-variate
standard normal probability density function (PDF); P t

f is
the threshold on failure probability; and hk’s are determin-
istic constraints such as lower and upper bounds of design
variables. The probabilistic constraint can also be stated in
terms of reliability or reliability index. The reliability is
defined as the complement of the probability of failure as
R = 1 − Pf , and the corresponding reliability index is
β = �−1(R) (Ditlevsen and Madsen 1996), where �(·)

is the cumulative distribution function (CDF) of a standard
normal distribution.

The RBDO problems can be solved using either gradient-
free (Mathakari et al. 2007) or gradient-based methods. In
this work, we will mainly focus on gradient-based meth-
ods. There are two major gradient-based approaches for
RBDO (Tu et al. 2001): the Reliability Index Approach
(RIA), which directly solves the probability constrained
optimization problem using the sensitivities of the proba-
bilistic constraints; and the Performance Measure Approach
(PMA), which constructs target performance function(s)
by an inverse reliability analysis and solves a determin-
istic optimization problem for each iteration. The two
approaches are usually implemented in conjunction with a
first-order reliability method (FORM), which is an approx-
imation method for reliability analysis (Ditlevsen and Mad-
sen 1996). Therefore, if FORM or inverse FORM is used in
RIA or PMA respectively, it is known that they are mathe-
matically equivalent if the probabilistic constraint is active
(Tu et al. 2001), although PMA tends to be more robust
than RIA. In other words, the commonly used RIA and
PMA approximate the failure probability Pf and its gra-
dient with respect to design variables ∇xPf at the same
level of accuracy, indicating that the optimized solutions
by both methods satisfy the same approximation of the
Karush-Kuhn-Tucker (KKT) optimality conditions. There
are also some variations of these two approaches, for exam-
ple, Royset et al. (2001a, b, 2006) proposed decoupled
RBDO formulations that use a more thorough inverse reli-
ability analysis than the traditional FORM-based PMA and
allows for heuristic updates of probability approximation by
other reliability analysis methods, for example second order
reliability method (SORM) and Monte Carlo simulation
(MCS).

Direct implementation of RIA or PMA results in a dou-
ble loop optimization scheme since the reliability analysis
or inverse reliability analysis requires an iterative process
to find the most likely failure point or the most probable
point (MPP) (Tu et al. 2001). In order to reduce the com-
putational cost, single loop algorithms (Cheng et al. 2006;
Liang et al. 2007; McDonald and Mahadevan 2008; Nguyen
et al. 2010) have been developed, which simplifies the
inner loop of the optimization, and use explicit estimations
instead of full reliability analysis or inverse reliability anal-
ysis. Some researchers have implemented these methods to
solve RBTO problems. Nguyen et al. (2011) applied a sin-
gle loop algorithm to system RBTO performed on a density
based multi-resolution topology optimization. Mogami et al.
(Mogami et al. 2006) employed a traditional double loop
RIA to solve RBTO problems on ground structures. Other
methods such as Monte Carlo simulation based stochas-
tic optimization (Royset and Polak 2004) and equivalent
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perturbation based robust optimization (Jalalpour et al.
2011) are also used to perform RBTO.

However, FORM only takes a first order approximation
of the limit state surface, and both the values of the probabil-
ity of failure and its sensitivity are estimated by collecting
information from a single point on the limit state surface
(Rackwitz 2001). Therefore, FORM-based approximations
are insufficient to capture a limit state function that is non-
linear with respect to both random variables and design
variables. In particular, the errors in the estimated sensi-
tivities can become quite significant, which is explained
with more details in Section 3. In reliability-based optimiza-
tion problem, the importance of the accuracy of sensitivity
information can be observed by examining the optimality
conditions of the optimization problem. The KKT condi-
tions for a general component RBDO problem as described
before are given by:

(1) Stationarity condition: ∇xf +λ∇xPf +∑
γi∇xhi = 0

(2) Primal feasibility: Pf − P t
f � 0, hk � 0 ∀k

(3) Dual feasibility: λ � 0, γk � 0 ∀k

(4) Complementary slackness: λ(Pf − P t
f ) = 0, γkhk =

0 ∀k

For most gradient-based numerical algorithms, the solu-
tion that satisfies the KKT conditions is the optimized one
that they are looking for. Therefore, if approximations of
the terms have to be adopted, they are always preferred to
be as accurate as possible. In general, the more accurate we
can estimate Pf and ∇xPf , the closer the solution is to a
local optimum. FORM-based RBDO methods typically use
a first-order approximation of the limit state function both
to estimate the probability of failure and its sensitivity with
respect to design variables. Some studies (Nguyen et al.
2011; Royset et al. 2006) proposed hybrid FORM-based
RBDO approaches where SORM, MCS or other reliability
methods are used to improve the estimations of the fail-
ure probability, but they still compute the sensitivity based
on a first-order approximation of the limit state function.
Although the primal feasibility condition is approximated
with a better accuracy, little attention has been paid to the
accuracy of the approximations involved in the stationar-
ity condition (i.e, the approximations of the sensitivities),
which may actually be more influential to the solution of
RBDO. Particularly, because the number of design vari-
ables is typically very large in RBTO, the final topology
can be severely affected by the errors in the sensitivity esti-
mation. In addition, the errors can progressively accumulate
during the iterative process of the optimization because the
sensitivity determines the search direction at each iteration
step. Thus, the accuracy of the estimation of sensitivity is
critical. For RBTO, the need for an accurate estimation of

the sensitivity of the probabilistic function has not been
clearly addressed, and a first-order approximation of the
sensitivity, which is typically not sufficiently accurate, is
widely used.

Thus this research adopts a new method named segmen-
tal multi-point linearization (SML) (Liu 2014; Liu et al.
2015) in conjunction with RIA to solve RBTO problems.
The SML method provides generally more accurate esti-
mations of the sensitivity of the probability of failure with
respect to design variables than the commonly adopted
FORM-based approximation by piece-wise linearly approx-
imating the limit state surface using multiple segments of
hyperplanes. While less essential, the SML method also
improves the accuracy of the estimations of the failure prob-
ability obtained in the reliability analyses involved in the
optimization. The RBTO problem concerned in this paper
is truss layout optimization restraining probability of exces-
sive compliance. The structure being optimized is discrete
(lattice-based), however, the design space as well as the
random space is continuous.

The remaining of the paper is structured as follows:
Section 2 describes the sensitivity analysis of the probabilis-
tic functions and the effect of the error in their approxima-
tion. Section 3 puts forward the novel segmental multi-point
linearization and Section 4 addresses the formulation of
RBTO considered in this paper. Section 5 provides numer-
ical examples of RBTO in 2D and 3D. Finally conclusions
are provided in Section 6.

2 Sensitivity analysis of probability functions

In order to employ gradient-based algorithms, sensitivity
analysis is essential. Deterministic formulation of topology
optimization has been studied extensively and the gradients
of the objective function and deterministic constraints have
been derived. However, challenge arises due to the presence
of a probabilistic objective function or constraint(s). In this
section, for completeness of the paper, we derive the analyt-
ical expression for the gradient of the probability of failure
with respect to the optimization design variables. The design
variables in this paper are assumed to be the parameters that
defines the limit state function(s). Different derivations and
thorough analyses of the parameter sensitivities of probabil-
ity functions can be found in the references (Breitung 1991;
Uryasev 1994).

Consider a general expression for a probabilistic con-
straint as P(G(u, x) < 0) � P t

f , and assume that the limit
state function G(u, x) is continuous and differentiable. The
gradient of the failure probability, with respect to the design
variables, can be interpreted as the change of Pf due to a
perturbation in x, the design variables. Considering a pertur-
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bation δxi on one of the design variables, the corresponding
change in the failure probability is given as:

δPf =
∫

�′
ϕn(u)du −

∫

�

ϕn(u)du =
∫

δ�

ϕn(u)du (1)

where � = {u|G(u, x) < 0} and �′ = {u|G(u, x+δxiei ) <

0} are the failure domain of the limit state function G(u, x)
before and after the perturbation δxi is imposed. The differ-
ence between � and �′ is denoted as δ�. The vector ei is a
vector of zeros except for its i-th component that equals 1.
When all the components of x are fixed, except xi , we can
define a new function Ge that is equivalent to the perturbed
limit state function G(u, xi, x̂):

Ge(u, xi) = G(u, xi, x̂) (2)

where x̂ are the fixed design variables which includes all
except the ith variable in x. In the augmented total space of
u and xi , the limit state surface in the random space can be
regarded as a level set of the implicit function Ge(u, xi) = 0
as shown in Fig. 1. The Hamilton-Jacobi equation describes
the transformation of the limit state surface due to change in
xi :

∇uG
eTδu + ∂Ge

∂xi

δxi = 0 (3)

The term δu can be interpreted as a field of infinitesimal
movement of the limit state surface in the random space,
which is defined on the entire limit state surface as indicated

Fig. 1 Graphical illustration of the relationship between limit state
surface and the level set function Ge(u, xi ) = 0. The shaded area
indicates the first quadrant of the random space

by the arrows in Fig. 1. The change of failure domain then
can be expressed as:

δ� =
∫

S

δuTndS (4)

where S represents the limit state surface before δxi is
imposed and n is the normal direction of the limit state
surface, which is positive when pointing toward the safe
domain. Because n = ∇uG

e/‖∇uG
e‖, then (4) can be

rewritten as:

δ� =
∫

S

δuT∇uG
e

‖∇uGe‖ dS (5)

Substituting (3) and (5) into (1), we can obtain:

δPf =
∫

S

− ϕn(u)

‖∇uGe‖
∂Ge

∂xi

δxidS (6)

Rearranging terms of (6) and taking the limit of δxi → 0,
we can obtain the derivative of Pf with respect to xi as:

∂Pf

∂xi

= lim
δxi→0

δPf

δxi

= −
∫

S

ϕn(u)

‖∇uG‖
∂Ge

∂xi

dS (7)

Since (7) applies to each component of x, the gradient of
Pf with respect to x becomes a surface integral on the limit
state surface:

∇xPf = −
∫

S

ϕn(u)

‖∇uG‖∇xGdS (8)

For most cases, the integral in (8) cannot be computed
exactly because it is a multi-dimensional surface integral.
The compromise is to use approximations instead of exact
evaluations. Actually, in RBDO, the probability of failure
itself is often approximated.

3 Segmental multi-point linearization
for approximating sensitivity

A commonly used approach to approximate the sensitiv-
ity of a probability is derived in consistence with FORM.
In many reliability analysis methods including FORM, the
original space of the random variables is often transformed
into a standard normal space. The FORM then takes a first
order expansion of the transformed limit state surface at the
point that has the largest probability density, i.e., the most
likely failure point, which is also called the design point.
The hyperplane defined by the first order expansion is used
as an approximation of the limit state surface. The result-
ing estimation of the sensitivity, which is adopted in most
FORM-based algorithms for optimization, was derived by
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Hohenbichler and Rackwitz (1986), and has the following
form:

∇xPf = − ϕ(β)

‖∇uG∗‖∇xG
∗ (9)

where

u∗ = min
u

{‖u‖ | G(u) = 0 } (10)

Equation (10) is the definition of design point. The design
point u∗ is a point on the limit state surface that is closest to
the origin of the standard normal space (Ditlevsen and Mad-
sen 1996; Rackwitz 2001). Intuitively, it is the point that
represents a limit state event that is most likely to happen.
The term G∗ denotes G(x, u∗), which is the limit state func-
tion evaluated at the design point. Equation (9) is equivalent
as taking the integration of (8) on the hyperplane defined by
the first order expansion at the most likely failure point. In
some cases, the FORM-based approximation of the sensitiv-
ity may not properly reflect the change of limit state surface
with respect to changes in the design variables. For exam-
ple, if the design update has an impact only on the curvature
of the limit state surface, the obtained sensitivity which is
based on a linear approximation of the limit state surface,
would not capture this change at all, as shown in Fig. 2.
Whereas the approximation of failure probability by FORM
might remain relatively accurate as the change only happens
in low probability density region. Essentially, the FORM-
based approximation of sensitivity is a differentiation of
the FORM computed failure probability, and such operation
usually enlarges the error. Examples and detailed compar-
isons can be found in reference (Liu et al. 2015). Although
the impact of the errors in sensitivity estimations may dif-
fer for different RBTO problems, our numerical examples

Fig. 2 A scenario when the FORM-based estimation fails to reflect
the true sensitivity. The limit state surface after and before a design
update (δx) have the same design point. A FORM-based approxima-
tion observes that the design update does not change the limit state
surface, thus the sensitivity is zero, which is not true

will show that the error in sensitivity estimation can have
a significant impact on the obtained optimized topology,
and FORM-based algorithms may also have problems to
converge.

A segmental multi-point linearization (SML) method was
developed to take approximations of the integral expres-
sion for the gradient of failure probability in (8) (Liu 2014;
Liu et al. 2015). Instead of integrating over the continu-
ous surface, the proposed method fits the limit state surface
segmentally with multiple linear pieces, and performs the
integration over each piece of hyperplanes. In particular,
if we take the first order expansion of the limit state sur-
face at the most likely failure point as single-segmental
linear approximation, and perform the integration over this
hyperplane, we obtain (9) as a special case. In general, the
multi-segmental linear approximation can be written in the
following form:

∇xPf = −
∫

S

ϕn(u)

‖∇uG‖∇xGdS

≈
p∑

j=1

Wj∇xG
j (11)

where ∇xG
j is the gradient of the limit state function with

respect to design variables evaluated at the j th fitting point,
which is a point shared by the limit state surface and the
corresponding piece of hyperplane. The number of fitting
segments is p, so is the number of fitting points, because
there is a one to one correspondence. The term Wj is the
weight for the corresponding component ∇xG

j obtained
by integrating (8) over the corresponding hyperplane
segment.

The idea of using piece-wise linear segments to approxi-
mate nonlinear limit state surface has been used in the liter-
ature for approximating failure probability but not for sen-
sitivity analysis. In reference (Ditlevsen and Madsen 2007),
the so-called multi-point FORM (also named as polyhe-
dral approximation) adopts locally most central points to
construct a tangent bounding polyhedron of the limit state
surface. For the version of SML addressed in this paper,
instead of bounding the limit state surface with a tangent
polyhedron, the method approximately fits the limit state
surface with an orthogonal “box”, which leads directly to
an easy-to-compute approximation of the sensitivity of fail-
ure probability. In addition, the fitting points in our method
can be found easily in a systematic way, while in the multi-
point FORM, finding local most central points can be a
heavy task. In terms of computational cost, the simplified
orthogonal fitting scheme only requires solving several 1D
nonlinear equations, which is significantly faster than the
iterative procedures for searching the local most central
points (Kiureghian and Dakessian 1998).
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The approximation of ∇xPf by the proposed SML
method involves two main steps: (1) selection of fit-
ting points; (2) computation of the weights based on a
local linearization of limit state surface around the fitting
points.

There are several guidelines for choosing the fitting
points. First, since (8) is a surface integral, the fitting points
should be on the surface. Second, the fitting points should
be close to the origin of the u-space due to the fact that
the low probability density region has little contribution to
the integration of (8), which is an effect of the exponential
decay of ϕ(u) in the standard normal space. Additionally,
the sample points should not be too close to each other
in order to avoid repetitive information (i.e., maximize the
information content from the selected points/hyperplanes),
because in our assumption, there should be no jump in the
limit state function, and both ∇xG and ∇uG should vary
smoothly. We proposed several fitting schemes that follow
these guidelines as reported in the paper (Liu et al. 2015),
namely tangent fitting, step fitting and orthogonal fitting.
In this paper, we will use a fitting scheme that is a simpli-
fied version of the orthogonal fitting scheme. The proposed
simplified orthogonal fitting scheme is particularly tuned
for RBTO problems where the limit state functions are gen-
erally smooth and have orders lower or equal to two with
respect to random variables. In general, it is good for limit
state surfaces with smooth and relatively uniform curva-
tures within the central region of the transformed random
space. An example of such smooth limit state function is
the compliance of structure with respect to the magnitude
of loads. The simplified scheme to find the fitting points for
the purpose of RBTO is summarized as follows:

(1) Select a reference point u(+1);
(2) Rotate the coordinate frame such that the reference

point lies on the positive half of the first axis of the
new coordinate frame;

(3) Search for intersection points of the new axes and the
limit state surface within radius r = kβ̃ from the ori-
gin, where k is a user defined parameter and β̃ =
‖u(+1)‖.

(4) Finally the effective fitting points are taken as the
intersection points including the reference point.

The rotation of coordinate frame is achieved by a con-
stant orthogonal transformation R such that u′

(+1) =
Ru(+1) = [‖u(+1)‖, 0, . . . , 0]T. The rotational matrix R can
be computed by replacing the first column of an identity
matrix by u(+1)/‖u(+1)‖ and applying a QR factoriza-
tion to the matrix, for example, a Gram-Schmidt process
(Heath 1997). We denote the positive direction of the
new axes i as e′

(+i) and the negative one as e′
(−i). The

computation of the intersection points can be done by solv-
ing 1D nonlinear equations. The solution of these equations
can be easily obtained, for example by means of the bisec-
tion method (Heath 1997). If for one direction there is no
intersection point inside the hypersphere with r = kβ̃, we
take the intersection point to infinity and it is not an effec-
tive fitting point. For example, point u(+2) in Fig. 3 is not
an effective fitting point and it is taken to be at the infin-
ity of direction e′

(+2). The parameter k defines how large the
search region is. Typically, values should be between 2 and 5
to make the fitting points neither too far nor too close to the
origin, such that the nonlinearity of the limit state surface is
properly captured.

To determine the weights, the limit state surface is first
linearized at the fitting points such that it is approximated
by several segments of orthogonal hyperplanes. Suppose the
j th effective fitting point is on the positive direction of axis
i and it is denoted as uj = u(+i). The hyperplane deter-
mined by u(+i) has a prescribed normal in the direction of
−e(+i). The gradient with respect to u of the affine func-
tion that describes the hyperplane is defined as ∇uG

je′
(+i),

which is the projection of the gradient of the limit state func-
tion at the corresponding fitting point onto the prescribed
normal direction of the hyperplane segment, i.e., −e(+i).
Graphically, the approximation looks like fitting the limit
state surface with a “box”. The “box” is shaded in Fig. 3
with dashed boundaries, which are the hyperplane segments.
The limit state function is linearized not only with respect
to random variables u but also design variables x at the fit-
ting points. Therefore, on each hyperplane, ∇uG and ∇xG

Fig. 3 Graphical illustration of the proposed segmental multi-point
linearization method (SML). Green triangle refers to the reference
point, blue circles refer to other fitting point, (±i) representing u(±i)
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remain constant. This segmental linearization leads to the
following weighted sum:

∇xPf = −
∫

S

ϕn(u)

‖∇uG‖∇xGdS

≈
p∑

j=1

∫

Sj

− ϕn(u)

‖∇uG‖∇xGdSj

=
p∑

j=1

−
∫
Sj

ϕn(u)dSj

‖∇uGje′
(+i)‖

∇xG
j (12)

where Sj is one piece of the hyperplane segments, which
appears as a facet of the “box”, and p is the number of effec-
tive fitting points. Based on (11), we can find the weight for
a discrete component ∇xG

j as:

Wj = −
∫
Sj

ϕn(u)dSj

‖∇uGje′
(+i)‖

(13)

Then the only task left is to carry out the integral term in
(13). Using orthogonality between adjacent planar segments
and rotational symmetry of the standard normal space, we
obtain:
∫

Sj

ϕn(u)dSj = ϕ(‖u(+i)‖)
∫

S′
j

ϕn−1(û′)dS′
j

= ϕ(‖u(+i)‖)
n∏

k=1,k 	=i

(
�(‖u(+k)‖

+ �(‖u(−k)‖) − 1
)

(14)

where S′
j is the hyperplane piece Sj described in the rotated

coordinates; n is the dimension of random space (i.e. num-
ber of transformed random variables). Here

∏
refers to the

product operator. If u(±k) is not an effective fitting point, we
take �(‖u(±k)‖) = �(∞) = 1. Substituting (14) into (13),
the weight is given by:

Wj = − ϕ(‖u(+i)‖)
‖∇uGje′

(+i)‖
n∏

k=1,k 	=i

(
�(‖u(+k)‖)

+�(‖u(−k)‖) − 1
)

(15)

The selection of the reference point has some flexibility.
Generally, the reference point should be close to the origin
in the standard normal space where the probability den-
sity is high. Thus the design point, as defined in (10), is
suggested to serve as the reference point. The effort of find-
ing the design point is a constrained optimization problem.
Researchers have already developed algorithms particularly
for this problem, for example the HLRF algorithm (Hasofer
and Lind 1973). The improved HLRF algorithm was pro-
posed by Zhang and Kiureghian (1995), which is used in
this paper. Because the sensitivity is calculated by combin-
ing the information from multiple points, the approximation

is not particularly sensitive to the location of the reference
point. Thus usually it is fine to set a relatively high conver-
gence tolerance for the improved HLRF algorithm to save
computational resource. More generally, the selection is not
restricted to the design point. Sometimes it is beneficial for
the accuracy to specify a particular direction for the refer-
ence point, and search for the point on the limit state surface
along that specified direction (Liu et al. 2015).

Requiring no additional processing, the computed
weights can also be used to improve the approximation of
Pf . The idea here resembles the multi-point FORM. Con-
sistently with the “box” approximation of the limit state
surface, the region inside the “box” can approximate the
safe domain as shown in Fig. 3. Due to the orthogonality
between adjacent linear segments, the failure probability is
approximated by

Pf = 1 −
n∏

i=1

(
�(‖u(+i)‖) + �(‖u(−i)‖) − 1

)
(16)

If the design point is taken as the reference point, the above
expression can be regarded as an update of Pf approximated
by FORM. The obtained Pf will be either larger or equal to
the Pf obtained by FORM because we are actually adding
more regions to the FORM approximated failure domain in
this process. When compared to FORM-based methods, the
additional computational cost of SML relates to the search
of fitting points and the evaluation of the limit state func-
tion and its gradient with respect to design variables. Among
them, the calculation of the gradient contributes the most.
Because the number of fitting points is no more than 2n,
the computational cost spending in the computation of gra-
dient increases to no more than 2n times, with respect to a
FORM-based approach.

A physical interpretation of the proposed method in
the context of RBTO is that, the method adaptively finds
multiple important design cases at each iteration of the
topology optimization, and the obtained gradient resembles
a weighted sum of the updating information collected from
all design cases. If only the loads are considered as random
variables, the analogy is the multi-load case topology opti-
mization. This also explains why the obtained structures are
not fully stressed designs (Rozvany et al. 1993). Comparing
to conventional multi-load case topology optimization, the
load cases and their weights are determined by reliability
analysis, thus, we are able to control the desired level of reli-
ability of the design. In addition, we can also consider other
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variabilities in design condition, such as the randomness of
material properties, without having extra difficulty.

4 Formulation of reliability-based topology
optimization

The mathematical formulation of the RBTO problem con-
sidered in this paper is stated as follows:

min
x

V = LTx

s.t. P(Cmax − C(x) < 0) − P t
f � 0

xmin � x � xmax

where L is a vector of element lengths, and the design
variables x are member areas of the ground structure. The
objective is the minimization of the volume of the material
used in the structure. Here the limit state function consid-
ers an upper bound Cmax on the total compliance of the
structure. The probability of the exceedance of Cmax is
constrained by P t

f , the target failure probability.
The nested formulation for minimization of volume with

compliance constraint on ground structures (Christensen
and Klarbring 2008) is used as a foundation to build up
the RBTO formulation. The generation of ground struc-
ture on structured grid is shown schematically in Fig. 4. In
the nested formulation, the state variables d are explicitly
solved using the equation K(x)d = F from finite element
analysis. The parameters xmin and xmax are the lower and
upper bounds of member areas. A small value ε is assigned
to xmin in order to prevent singularity of the stiffness matrix
K (Christensen and Klarbring 2008). The RBTO approach is
developed in the manner of RIA, where we directly treat the
probability constraint in the optimization. The sensitivity
of the probabilities in the constraint function is calculated
using the SML method as described in Section 3. The opti-
mal topology is extracted using a cutoff strategy: members
with cross-sectional areas xi < ηxmax after optimization are
ignored in the output topology, where η is a user-defined
parameter to control the level of detail in the print-out of the
final topology. Therefore, the presented topologies after the
cutoff should only be used to identify the most important
components of the optimized truss structures, and do not
necessarily reflect stand-alone structures that are locally and
globally stable and in equilibrium. However, the traditional
ground structure approach is a well-developed method that

has been shown to successfully indicate the optimal topolo-
gies of structures (Bendsøe and Sigmund 2003; Christensen
and Klarbring 2008), which serves our primary interest of
this paper very well. Ongoing Research aims to improve the
traditional sizing approach of ground structure such that one
can obtain a stand-alone structure in the end, for example,
by applying filter during the optimization (Ramos Jr. and
Paulino 2016). However, such considerations are beyond the
scope of the present work.

Compliance is defined as C = FTd, where d is the vector
of nodal displacement. In linear elastic analysis of struc-
tures, compliance is the reciprocal of stiffness. That is, if
the compliance is small, the structure is stiff. We use com-
pliance as the limit state for several reasons. First, it gives
a global assessment of the structural behavior, such that the
optimization formulation becomes mathematically simple
and computationally convenient. Second, since compliance
is a popular measure in the field of topology optimization,
then the comparison between RBTO and deterministic opti-
mization is familiar to readers in that field. Finally, the use
of compliance as limit state function preserves the con-
vexity of the original deterministic formulation in certain
cases. Given that the volume function and box constraints
are convex about the design variables, the convexity of the
formulation depends on the convexity of the feasible set
defined by the probability constraint. According to Prékopa
(1995), a probability constrained feasible set is convex if the
following conditions hold:

(1) the original random variables has continuous log-
concave PDF;

(2) The limit state function is quasi-concave with respect
to both design and random variables.

Many probability distributions are log-concave, for
example, multivariate normal distribution and exponential
distribution. In our case, compliance is a known convex
function of the design variables as member areas (Chris-
tensen and Klarbring 2008). Because the compliance can be
written as a quadratic form of the forces as C = FTK−1F
and K−1 is positive definite, it is also convex about the
forces. As the compliance appears in the limit state function
with a negative sign, the convexity of compliance indi-
cates the concavity of the limit state function. Therefore,
if the random variables are forces with multivariate nor-
mal distributions, which is quite common and practical, the

Fig. 4 Ground structure
connectivity level generation
example on a structured grid. a
Base 4 × 4 grid. b Level 1
connectivity. c Level 2
connectivity. d Level 3
connectivity, which is also full
connectivity for this grid

(a) (b) (c) (d)
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probabilistic constraint about compliance forms a convex
feasible set. As a consequence, the optimization becomes
convex and the solution is guaranteed to be globally optimal.
However, this cannot hold as a general conclusion.

We would like to point out that the SML-based RBTO
method is neither limited to the ground structure approach
nor to the use of compliance as the limit state function. For
instance, similar problems could be solved using density-
based approaches (Bendsøe and Sigmund 2003).

5 Numerical examples

In this section, we present several numerical examples
to demonstrate the validity and features of the proposed
method. All of the problems follow the formulation in
Section 4. We set ε = 10−5. The values of Cmax , η and
P t

f vary for different problems. In the analyses of the opti-
mized structures, the members being ignored in the output
topology are still included to prevent singularity of the stiff-
ness matrices, which have very little influence on the global
behavior of the structure (i.e., the global compliance). With-
out loss of generality, no physical units are adopted, but we
ensure that the quantities are consistent in magnitude.

The optimizer used in the examples is the Method of
Moving Asymptotes (MMA) (Svanberg 1987), one of the
most popular optimization algorithms for structural opti-
mization. In our implementation, as we tune the parameters
to achieve and improve convergence, we finally found best
performance when the lower asymptote is equal to 0, which
makes the optimizer become equivalent to the Convex Lin-
earization method (CONLIN) (Fleury and Braibant 1986).
The algorithm of CONLIN is now rarely used in topol-
ogy optimization because of its slow convergence, which
is a result of the over conservative convex approximation
(Christensen and Klarbring 2008). However, for the RBTO
problems considered in this research, a conservative approx-
imation is indeed preferred. One of the reasons is that
RBTO usually involves updates in both design space and
random space at each iteration step. If the design variables
change too fast, the reliability analysis may not be able to

correctly capture the change of limit state surface in the ran-
dom space. For more details regarding the implementation
of the optimizer, the readers are referred to the reference
(Liu 2014).

In the examples, in addition to the reliability index
β = �−1(R), we also provide the value of correspond-
ing reliability R. To evaluate the accuracy of the probability
approximation by the SML method, we need to use the
value of reliability directly rather than the reliability index,
which is obtained by a logarithm-like transformation of the
reliability (Rackwitz 2001).

5.1 A benchmark problem

The first example is a benchmark problem for RBTO pro-
posed by Rozvany (2008) and Rozvany and Maute (2011).
The analytical solution for the problem has been derived, so
it can be used to check the validity of numerical methods
for RBTO. The problem is depicted in Fig. 5a. The design
domain has width L = 2 and depth D = 1, and is pinned
along the whole upper boundary. The horizontal force H is
the only random variable, which is characterized by a stan-
dard normal distribution with a mean of zero and a standard
deviation of one. The vertical force V is fixed with a value
of 3.0 acting downwards. Young’s modulus E is taking a
unit value. The threshold for the compliance is set to be
Cmax = 1. The target failure probability is 0.0027, which
corresponds to a desired reliability index βt = 2.7822 (i.e.,
failure probability P t

f = 0.0027), according to reference
(Rozvany 2008).

The problem can be transformed equivalently to a deter-
ministic multi-load case topology optimization problem for
two cases that H = ±3.0 (Rozvany 2008; Rozvany and
Maute 2011), which was solved analytically in (Rozvany
et al. 1993). Then based on the solution for the equivalent
deterministic multi-load case problem, the analytical solu-
tion of the RBTO benchmark problem is given by a two-bar
truss as shown in Fig. 5b with α = 35.264◦. The mini-
mum volume of the truss is Vol = 60.75. The reliability of
the optimal design is calculated by integrating the PDF of
the normal distribution of the random variable H from -3

Fig. 5 Benchmark problem for
RBTO. a Domain, loading and
boundary conditions. b
Analytical solution for the
optimal topology, where
α = 35.264◦ and Vol = 60.75

(a) (b)
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Fig. 6 The optimized topology by the proposed SML-based RIA
based on a 11 × 6 grid ground structure

to 3, the interval that is essentially the safe domain of the
structure in the random space. Therefore, the reliability is
R = 2�(3) − 1 = 0.9973, which achieves the target.

Typically, numerical approaches based on FORM can-
not solve this problem since there are actually two design
points for a symmetric structure that the solution should be
(i.e. u∗

1 = −3.0 and u∗
2 = 3.0), thus the FORM approx-

imated gradient always ignores one of the two scenarios.
For this problem, the inverse reliability analysis involved
in PMA can actually be solved analytically. Thus numeri-
cal implementation in reference (Rozvany and Maute 2011)
using this idea successfully reproduced the analytical solu-
tion. However, for most practical problems, an analytical
solution for the inverse reliability analysis cannot be derived
easily. A more general numerical approach that can solve
this problem correctly is desired.

The proposed approach shows its capability solving
the benchmark problem. The numerical solution is first
extracted from a 11 × 6 ground structure grid, with full
connectivity between nodes in order to sweep the max-
imum solution space. Due to the discrete nature of the

Fig. 7 The optimized topology by the proposed SML-based RIA
based on a 41 × 2 grid ground structure

Fig. 8 The random space for the benchmark problem, where u = H

since no transformation is needed. The red curve plots the probability
density function of u

ground structure, the optimized topology after the cutoff
with η = 0.01 actually consists of four bars as shown in
Fig. 6. The value of the final objective is V ol = 61.3783,
1.03 % larger than the analytical optimal volume. By taking
weighted averages of the orientations of each pair of the bars
with respect to member areas, the interpolated two-bar lay-
out turns out to be very close to the analytical solution with
α = 35.698◦, at a difference of 1.23 %. This linear inter-
polation strategy is adopted from the reference (Rozvany
et al. 1993). It is expected that a four-bar truss is obtained,
because the ground structure approach searches for the pro-
jection of the optimal solution in the limited solution space,
and there is no pair of bars that has the exact orientations
as the analytical solution in our ground structure. This issue
can be diminished by refining the ground structure. Since
the first example already shows that the solution consists of
4 straight bars, to save computational cost, a 41 × 2 grid
with full connectivity is used as the refined ground structure,
which has 1761 non-overlapping potential members. The
obtained topology from the new ground structure is shown
in Fig. 7. The two thin bars of the 4-bar truss, although
are still above the cutoff limit, are almost negligible since
their member areas are just 4.70 % of the thick bars. The
weighted mean value of the bar direction gives α = 35.078◦
and the total volume of the final design is Vol = 60.9092.
The differences in the volume and angle to the analytical
solutions are 0.26 % and 0.53 %, respectively. If we increase
the cutoff limit η to neglect the two slender bars, the two
thick bars orient to the angle of 34.992◦, which still agrees
well with the analytical solution.

Fig. 9 Design domain and boundary condition of the asymmetric
crane arm design
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Fig. 10 Optimized topology by deterministic topology optimization

Using our approach, without any knowledge of the prob-
lem a priori, we can actually make the KKT conditions
satisfied exactly at the optimal solution. This is due to the
fact that for this single random variable problem, the limit
state surface becomes just two points as shown in Fig. 8.
The proposed method is able to find these two points and
the approximation of the limit state surface becomes exact,
hence the computed ∇xPf and Pf become exact in the given
design spaces (i.e. the ground structures). Symmetry of
the structure is not imposed before optimization, however,
by directly solving the probability constrained optimization
with the accurate evaluations of ∇xPf and Pf , we are able
to converge to the symmetric analytical solution, even if we
start the optimization from asymmetric initial designs. This
also verifies the correctness of the analytical solution for
this RBTO benchmark problem.

5.2 Crane arm design

This example demonstrate the advantages of the proposed
method by comparing the results of deterministic topology
optimization, FORM-based RBTO and the proposed SML-
based RBTO. The PMA is performed as an example of the
FORM-based RBTO algorithms. The objective of this prob-
lem is to find an optimal topology for the structural design
of a crane arm, which is a 2D beam loaded at its two ends
with supports in the middle. The design domain is a 4 × 1
rectangle box (see Fig. 9). The material of the structure is
linear elastic with Young’s Modulus E = 100. The structure
is pin-supported along a unit length portion of the bottom,
starting from 1 to 2 in distance from the very left end. Two
independent vertical loads V1 and V2 are acting on the two
bottom tips of the beam. Thus the boundary condition is not
symmetric. Each of the forces is assumed to follow a normal
distribution with a mean of 7.0 and a standard deviation of
3.0. Thus the coefficients of variation are then around 0.43,

Fig. 11 Optimized topology by FORM-based PMA

Fig. 12 Optimized topology by SML-based RIA with design point as
the reference point

indicating relatively large variability of the forces around
their mean values. The target reliability index is set to be
βt = 2.0 (Rt = 0.9772). The limit on compliance is set to
be Cmax = 1.2. The settings are rather arbitrary, as they are
only used to show the general applicability of the proposed
method. A constant cutoff parameter η = 0.02 is applied
throughout this example. Since there are only two random
variables involved, we can plot the limit state surface in 2D
in order to illustrate how the SML method works in detail.
The ground structure used to do the optimization is based on
a 13×4 uniform grid with level 6 nodal connectivity, which
contains 629 non-overlapping members.

The optimized topology by deterministic approach, after
the cutoff being applied, is shown in Fig. 10, where the
variations of loads are not considered. We define the deter-
ministic problem using the mean values of the random
variables. If the obtained structure is actually subjected to
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Fig. 13 Contour plot of limit state function for the optimized design
in Fig. 12. The blue circles indicate the fitting points; the green triangle
refers to the reference point; the black dot is the design point; the red
solid curve is the limit state surface. The real limit state surface (red
solid curve) is closed, but the approximated limit state surface (black
dashed lines) is not, because the fourth intersection point is not an
effective fitting point
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Table 1 Summary of optimization results by different approaches

Approach Vol βMCS (RMCS ) cutoff η

Deterministic 85 1.04 (0.8508) 0.02

FORM-based PMA 274 1.51 (0.9345) 0.02

SML-based RIA 278 1.91 (0.9719) 0.02

random loads, the reliability of the structure is measured
using MCS with a convergence criterion of 2.5 % coeffi-
cient of variation (c.o.v.). The MATLAB function for MCS
included in the FERUM package (Hahnel et al. 2000) is
used in this example and will be used in the remainders
of the section. Figure 11 shows the result obtained by the
FORM-based PMA. Finally, by setting the design point as
the reference point in the embedded SML subroutine, the
SML-based RIA provides an optimized topology as shown
in Fig. 12 after the cutoff. The actual reliability of the opti-
mized structures by FORM-based and SML-based methods
are also measured by MCS after the optimization, since
the target reliability is achieved in an approximate way for
both approaches. The contour plot of the limit state func-
tion of the design obtained by the SML-based method is
shown in Fig. 13. The reference point generates 3 fitting
points in total including itself. The design point corre-
sponds to the critical scenario when V1 = 7.2838 and
V2 = 13.0210.

Table 1 compares the numerical results of the three
structures. The analytical solution is not known for this
problem, but we can conclude that the design by SML-
based RIA (as shown in Fig. 12) is more favorable than
the design by FORM-based method. The two designs are
almost the same in volume, but the design by the new
approach has a higher actual reliability as measured by
MCS, which means that the material is assigned more effi-
ciently by the proposed algorithm than the conventional
FORM-based algorithms. This comparison illustrates the
problem of FORM-based methods as discussed in Section

Fig. 14 Stress distribution in the optimized topology after cutoff.
Different colors refer to different values of stress in the members

Fig. 15 Optimized topology by SML-based RIA considering random-
ness of E

1, which is that, mainly due to the error in the first order
approximation of the sensitivity, they might not converge
to a solution as close to an optimum as the one obtained
by the proposed approach. Typically, FORM-based meth-
ods would converge to an optimized design corresponding
to a single design case. On the contrary, the SML-based
method converges to designs that corresponds to multiple
design cases. Therefore, optimized structures by the SML-
based approach are more reliable in general than the ones
obtained by FORM-based approaches. We would like to
remark that the design obtained by SML-based RBTO is not
a fully stressed design. The volume-compliance formula-
tion for topology optimization is known to converge to fully
stressed designs under single load case (Christensen and
Klarbring 2008). The full stress referred here is not a phys-
ical constraint in the formulation, but rather an analytically
derived uniform stress value for all members in the opti-
mized topology depending on the Lagrange multiplier for
the constraint about compliance (Christensen and Klarbring
2008). As mentioned before, the SML-based RBTO design

(a)

(b)

Fig. 16 a Design domain and boundary conditions; b Initial ground
structure generated on a 10x4x4 grid with level 3 connectivity, which
contains 6400 non-overlapping bars
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(a) (b) (c)

Fig. 17 Possible loading scenarios. a Bending in Z direction; b Twist
of the cantilever; c Bending in Y-Z direction

is naturally similar to a multi-load case design, and for a
structure optimized for multiple load cases, it is impossible
to be fully stressed under any single load case. Figure 14
depicts the stress distribution in the structure under the load
case given by the design point (i.e., V1 = 7.2838 and
V2 = 13.0210). Members with areas lower than the cut-
off limit are also not shown. We observe that the stresses
are not the same for the members in the compression group
or in the tension group, thus the structure is not uniformly
stressed under the critical load case. However, the mem-
bers are generally highly stressed, implying that the material
still works efficiently. As we measured in this example, the
number of calls executing the gradient computation in the
SML-based approach is 3.96 times of the FORM-based one.
This is because the number of fitting points in this problem
is varying from 1 to 4 for different iterations, and most of
the time there are 4 fitting points.

Thanks to the generality of the proposed method in
dealing with random variables, it is not difficult to incor-
porate the randomness in material property. We can add
the Young’s modulus as an additional random variable

which has a lognormal distribution with a mean of 100
and a standard deviation of 10. The lognormal distribu-
tion is employed because it cannot have a negative value,
which matches the physical nature of Young’s modulus. The
optimal design has Vol = 286 and βMCS = 1.90. Com-
paring to the design with a fixed E, we observe that the
volume increases due to the introduction of randomness
in material property. The optimal topology is presented in
Fig. 15, which is also slightly different from the one without
considering randomness of the Young’s modulus.

5.3 3D cantilever

This example is to demonstrate the ability of the method
to handle large variation in loading condition. Here we try
to find an optimal topology for a 3D cantilever. The design
domain is shown in Fig. 16a. The cantilever is subject to
eight forces applied at four points on the right facet of
the cantilever, and it is pin-fixed on the left facet. All the
eight random forces are uncorrelated and share the same
marginal probability distribution: the normal distribution
with a zero mean and a standard deviation of 2.0. The limit
state function is defined to have a threshold of 5.0 on total
compliance. Young’s modulus E = 100 is used as material
property and is fixed in this problem. The ground structure
is generated on a 10 × 4 × 4 grid with level 3 connectiv-
ity of nodes leading up to 6400 non-overlapping potential
members as shown in Fig. 16b.

In this problem, because the mean values of the random
forces are zeros, the solution of the optimization prob-
lem is totally defined by the variation of random forces.
With the setting of uncertain loads, the structure could have
many possible static states. For example, Fig. 17a shows

Fig. 18 Four views of the
optimal topology obtained by
SML-based RBTO algorithm for
βt = 2.0. Member sizes are
normalized by maximal area
xmax = 10.0370

(a) (b)

(c) (d)
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Fig. 19 Four views of the
optimal topology obtained by
SML-based RBTO algorithm for
βt = 2.5. Member sizes are
normalized by maximal area
xmax = 15.3063

(a) (b)

(c) (d)

the scenario that the cantilever is subjected to bending in Z
direction; Fig. 17b exhibits the scenario when an equivalent
torsion is applied to the cantilever; it is also possible that a
bending happens along the diagonal direction of Y-Z plane
as shown in Fig. 17c. There are still many other possible
combinations of forces.

Because this example considers very complicated load-
ing cases, it is difficult to perform FORM-based RBTO
design and deterministic optimization as references. As we
try the FORM-based PMA for this problem, it diverges
quickly. Because RIA is less robust than PMA, we can
expected that FORM-based RIA will also diverge. This
problem is also difficult to be formulated in a deterministic
manner, because the mean values are all zeros. It might be
possible to select some typical loading cases, for example
the scenarios shown in Fig. 17, and perform optimization

with prescribed multiple loading cases, however, the rela-
tive importance of each loading case needs to be specified
manually which may not reflect the real reliability of the
structure.

Using the proposed SML-based approach, topology opti-
mization solutions are obtained for different target reliabil-
ities as shown in Figs. 18, 19 and 20. The member sizes
are shown such that they are proportional to the computed
sizes. For each design, four views are shown in order to help
recognize the frame layouts. The obtained designs are com-
pared in Table 2. In order to present a clear configuration
of the topology, different cutoff criteria are applied to the
three cases. In the traditional ground structure approach, this
only influences the print-out topologies, and the underlying
structures are not affected. We also count the number of bars
appear in the shown topologies after the cutoff is applied.

Fig. 20 Four views of the
optimal topology obtained by
SML-based RBTO algorithm for
βt = 3.0. Member sizes are
normalized by maximal area
xmax = 20.6788

(a) (b)

(c) (d)
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Table 2 Summary of Optimized Structures for Different Target
Reliabilities

βt (Rt ) Vol βMCS (RMCS ) cutoff η Number of Bars

2.0 (0.9772) 232 1.34 (0.9099) 0.015 310

2.5 (0.9938) 345 1.83 (0.9664) 0.010 358

3.0 (0.9987) 478 2.38 (0.9913) 0.010 367

Most of the members are ignored because they are not con-
tributing much to the stiffness of the cantilever structure
given the loads. The optimized topologies for the three cases
are very similar, but we observe a dramatic increase in opti-
mized volume (i.e., the objective). We also notice that the
error in the approximation of failure probability is relatively
large in this example, which is partially due to the high
dimension of the random space. After all, the performance
of the proposed method is still good, as we can identify in
the final topologies some classical layout patterns that are
good for flexural and torsional stiffness.

5.4 3D tower crane design

The final example is a comprehensive design problem
towards potential realistic applications. The structure to be
optimized is a tower crane shown in Fig. 21. The structure
is attached to the ground by means of displacement restric-
tion conditions. There are 3 vertical loads in Z direction at
point (1), (2), and (3) which are denoted as V1, V2, V3. The
6 horizontal loads in X-Y plane are also applied at the 3
points. They are denoted as HD,i , where D is either X or Y
direction, indicating the direction of the force, and i refers to
the point where the forces are applied. Not only the forces,
but also the Young’s modulus is taken as a random variable
in this problem. We enforce that V1 = V2, HX,1 = HX,2,
HY,1 = HY,2, hence there are in total 7 random variables.

Fig. 21 Design domain and boundary conditions for 3D crane design

The probability distributions of the random variables can
be found in Table 3, where μ is the mean value, σ is the
notation for standard deviation, and ρ refers to correlation
coefficient. To explore the influence of the variation of ran-
dom variables, we set up two different cases for σ ’s. In
Case 2 the random variables have the same distributions and
means as in Case 1, but the standard deviations are two times
larger than in Case 1. Besides, unlike the previous exam-
ples, the random variables in this problem are not totally
independent of each other, which makes the problem more
practical. For the RBTO problem, βt = 3.0 (Rt = 0.9987)
for both cases. The threshold of compliance in the limit state
function is 5.0. The concave shaped design domain makes
the generation of embedding ground structure complicated
because we have to avoid bars that across the void region.
We use the efficient algorithm developed by Zegard and
Paulino (2014, 2015) to do the job. The ground structure
used to perform the optimization is then shown in Fig. 22a
which has 2620 non-overlapping members.

The deterministic topology optimization performed
based on mean values provides a topology as shown in
Fig. 22b. Figure 22c to f plot two optimized topolo-
gies by performing RBTO using the proposed SML-based
approach. Members are plotted proportional to member
sizes normalized by the maximal area (xmax) of each opti-
mized structure.

The optimized design by deterministic topology opti-
mization has a volume equal to 13 which is extremely small
and the structure is very sensitive to even a small pertur-
bation in loads. We can identify from the topology that
the main components of the lower structure are isolated
columns without bracings. Although the actual stiffness
matrix of the obtained structure is not singular due to the
existence of many extremely slender bars that are neglected
after the cutoff, the extracted essential topology indicates
that the structure is not reliable and robust to variations in
loads. The optimized topology shown in Figs. 22c and d
is designed for Case 1 where the random variables have
smaller variations. The optimal volume turns out to be 276
and the reliability index measured by MCS is βMCS = 2.56
(RMCS = 0.9948). The number of bars in the presented

Table 3 Statistics of Random Variables for 3D Tower Crane Design

Variable Distribution Type μ σ (Case 1) σ (Case 2) ρ

V1(= V2) Normal -3 0.5 1 0.0

V3 Normal -3 1.5 3 0.0

HX,1(= HX,2) Normal 0 0.5 1
0.3

HX,3 Normal 0 1 2

HY,1(= HY,2) Normal 0 0.5 1
0.3

HY,3 Normal 0 1 2

E Lognormal 100 5 10 0.0
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Fig. 22 a The ground structure
containing 2620
non-overlapping bars. (b)
Optimized topology by
deterministic topology
optimization; xmax = 0.3496. c
Side view and d isometric view
of the optimized topology by
SML-based RBTO for Case 1;
xmax = 6.2064. e Side view and
and f isometric view of the
optimized topology by
SML-based RBTO for Case 2;
xmax = 19.4276

(a) (b)

(c) (d)

(e) (f)

topology is 344 after cutoff using η = 0.015. The topology
shown in Fig. 22e and f considers Case 2 where the random
variables have larger variations. The optimized structure has
an volume of 879. The reliability index measured by MCS
is βMCS = 2.54, which corresponds to RMCS = 0.9944.
There are 381 essential members in the shown topology
using the same cutoff parameter.

Comparing the results obtained by deterministic topol-
ogy optimization and RBTO, the optimized topology by
RBTO has more redundant members in the structure after
cutoff than the deterministic one, as the same cutoff param-
eter is applied to all cases. Beyond that, it is also observed
that the lower structure of the tower crane in the optimized
topology by RBTO becomes hollow and has 4 main pil-
lars with lateral bracings around the perimeter, which is

beneficial for flexural and torsional stiffness. The lateral
and torsional loads can be introduced by variations of the
horizontal forces, which models the wind effects. For the
two cases of random variables, no significant difference in
the optimized topologies is found, but the volume of mate-
rial occupied by the optimized structure increases nearly 3
times. This helps to keep the structure still reliable under
larger uncertainties, as the magnitudes of forces are more
likely to be larger than in Case 1.

The convergence plot for the second case is included
in Fig. 23. The blue line shows the convergence of objec-
tive function, while the red line shows the estimated value
of reliability index of each intermediate design. The esti-
mated β (by the SML method) finally converges to βt , as the
probabilistic constraint becomes active. The convergence
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Fig. 23 Convergence plot of the RBTO problem in Case 2. The blue
line shows the change of objective during the optimization. The red
line shows the change of reliability index (approximated by SML
method)

is generally smooth. Although there are small oscillations
(as shown in the zoom-in box) during the process, the
optimization converges successfully in the end.

6 Conclusion

The random nature and uncertain variation of design condi-
tion can affect the favorable design of a structure that is both
reliable and economic. To address this concern, reliability-
based topology optimization (RBTO) was proposed, which,
however, is more challenging to solve than deterministic
topology optimization due to the existence of probabili-
ties in the formulation. Numerical approaches for RBTO
typically have to take approximations of the probabilities
and their gradients, thus the KKT optimality conditions are
only approximately satisfied even at a converged numerical
solution, excluding rounding errors. The key to get closer
to an exact KKT point is to improve the accuracy of the
approximations of the probabilities and their gradients.

This paper proposes a gradient-based RBTO approach,
which adopts the segmental multi-point linearization (SML)
method to improve the estimation of the probability of
failure and its gradient with respect to design variables.
The SML-based approach is more suitable for RBTO prob-
lems with nonlinear limit state functions than conventional
FORM-based methods in particular due to the improved
accuracy in the estimation of the gradient of the probability
with respect to the design variables.

The proposed approach is applied to truss layout opti-
mization problems based on ground structures. Several
examples are shown considering uncertainties in loads and

material property. Due to the improved accuracy in sen-
sitivity estimation and reliability assessment, the proposed
method can converge to the analytical solution of a bench-
mark RBTO problem, and at the same time it is applicable to
RBTO problems for which analytical solutions are typically
not available. In some examples, the SML-based approach is
capable of converging to an optimized design that possesses
more efficient use of material than the designs by conven-
tional FORM-based methods. In some other examples, the
SML-based approach can provide optimized solutions when
FORM-based methods fail to converge.

The proposed optimization approach converts to the tra-
ditional FORM-based approach automatically when the
limit state function is linear or nearly linear if the design
point is selected as the reference point in the embedded
SML subroutine. As a gradient-based method, the compu-
tational efficiency of the proposed approach is also quite
attractive.
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Appendix: Nomenclature

Abbreviations

c.o.v. Coefficient of variation
CDF Cumulative Distribution Function
CONLIN Convex Linearization Method
FORM First Order Reliability Method
HLRF Hassofer-Lind-Rackwitz-Fiessler (Algorithm)
KKT Karush-Kuhn-Tucker (Optimality Conditions)
MCS Monte Carlo Simulation
MMA Method of Moving Asymptotes
MPP Most Probable Point
PDF Probability Density Function
PMA Performance Measure Approach
RBDO Reliability-Based Design Optimization
RBTO Reliability-Based Topology Optimization
RIA Reliability Index Approach
SML Segmental Multi-point Linearization
SORM Second Order Reliability Method

Symbols

G
j

The affine function describing hyperplane segment i
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Sj Hyperplane segments of a piecewise linearized limit
state surface

β Reliability index
βt Target reliability index
δ� Change of failure domain
ei Orthonormal basis of space
R Rotational matrix
u Transformed random variables
u∗ Most likely failure point (design point)
x Design variables
�,�′ Failure domain and failure domain after design

update
�, ϕ CDF and PDF of standard normal distribution
G Limit state function in transformed random space
Ge Equivalent limit state function
hk Deterministic constraints
k User defined parameters for the fitting scheme
n Number of random variables
p Number of fitting points
Pf Failure probability
P t

f Target failure probability
R Reliability measured in probability
Rt Target reliability
S Limit state surface
Wj Weight for contribution of segment j
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