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Invariant and smooth limit of discrete geometry
folded from bistable origami leading to multistable
metasurfaces
Ke Liu 1, Tomohiro Tachi2 & Glaucio H. Paulino 3

Origami offers an avenue to program three-dimensional shapes via scale-independent and

non-destructive fabrication. While such programming has focused on the geometry of a

tessellation in a single transient state, here we provide a complete description of folding

smooth saddle shapes from concentrically pleated squares. When the offset between square

creases of the pattern is uniform, it is known as the pleated hyperbolic paraboloid (hypar)

origami. Despite its popularity, much remains unknown about the mechanism that produces

such aesthetic shapes. We show that the mathematical limit of the elegant shape folded from

concentrically pleated squares, with either uniform or non-uniform (e.g. functionally graded,

random) offsets, is invariantly a hyperbolic paraboloid. Using our theoretical model, which

connects geometry to mechanics, we prove that a folded hypar origami exhibits bistability

between two symmetric configurations. Further, we tessellate the hypar origami and harness

its bistability to encode multi-stable metasurfaces with programmable non-Euclidean

geometries.
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The goal of programming non-Euclidean geometry from flat
sheets is to control its shape, which usually involves a mix
of art and technology. For instance, in thin shells, local

geometric incompatibilities lead to out-of-plane buckling to cre-
ate various three-dimensional shapes. Such phenomena abound
in nature, e.g., wavy flowers and leaves1,2, the growth pattern of
guts3, and the wrinkles on our brains4. Persistent efforts have
been made to harness the buckling of thin shells into non-
Euclidean shapes toward a range of applications5–7. Although the
underlying mechanism is different, principles of origami (folding)
can also be used to transform thin flat sheets into non-Euclidean
shapes through purely isometric deformations at the local level
(i.e., no stretching or cutting)8–13. For example, origami has been
used to achieve structures with various interesting mechanical
properties, such as tunable Poisson’s ratio14–16, programmable
stiffness17–20, and multi-stability21–25. As a result, origami has led
to major advances in multi-functional structures and program-
mable metamaterials26–28.

While it is natural to imagine smooth surfaces arising from
curved folds11,13,29; discrete folds can also converge to smooth
surfaces, which has been demonstrated using the Miura tessella-
tion8 and the pleated hyperbolic paraboloid (hypar) origami30–32.
Here we focus on the latter, which is obtained by folding a piece
of paper along concentric squares and their diagonals to arrive at
a seemingly smooth saddle shape. Unlike conventional origami
patterns used to generate non-Euclidean shapes8–10, the hypar
origami does not arise from a tessellated pattern, and thus has no
periodic unit cells. The hypar origami is popular in decorative
arts, owing to its aesthetic shape, simple pattern, and its tolerance
to geometric variations, as demonstrated in Fig. 1. The hypar
pattern possesses attractive mechanical properties, such as
structural bistability33,34. Interestingly, the two stable configura-
tions of a hypar origami are symmetric to each other, which
makes it a promising platform for multi-functional devices or
metasurfaces.

Despite its aesthetic appeal and potential for technological
applications, a comprehensive understanding of the hypar ori-
gami remains elusive because of the challenges associated with it
being a non-rigid origami with non-periodic pattern. In an
attempt to gain a deeper theoretical understanding of the hypar
origami and use it for engineering applications, we aim to answer
the following questions: can we prove, theoretically, that the
actual folded shape of the hypar origami is a hyperbolic para-
boloid? How does the local deformation of each panel relates to
the global shape of the pattern? What are the conditions for the

bistability to exist? How can we use the hypar pattern to create
metasurfaces?

In what follows, we develop a theoretical model of the geo-
metry and mechanics of the pleated hyperbolic paraboloid
(hypar) origami, and compare the results with numerical simu-
lations and experiments. Instead of looking at certain transient
states, we construct a complete analytical description of folding
concentric squares by homogenizing local folds to establish a
differential map of the global geometry. By solving the obtained
differential equation, we show that the analytical limit of the
folded shape of the hypar origami, at any stage of its folding
process, is indeed a hyperbolic paraboloid, as its name suggests.
We also show that the same geometric limit holds true for general
pleated concentric squares with or without uniform offsets, such
as the ones shown in Fig. 1. Our analytical description explicitly
connects the global curvature and local folds, and helps us to
connect the mechanics of the hypar pattern with its geometry. It
is followed by a proof that the bistability of the hypar pattern
always exist when a few basic assumptions are satisfied. We build
both physical models and numerical models to verify the analy-
tical model. Although established based on simplifications, the
analytical model is able to accurately predict the actual geometry
and mechanical behavior of the hypar pattern. For the numerical
model, a bar-and-hinge reduced order model is used to conduct
nonlinear simulations, capturing the bistable snapping between
two symmetric stable states of folded hypar structures. Finally,
using this knowledge, we create a mechanical metasurface by
tessellating the hypar pattern to achieve programmable non-
Euclidean geometries.

Results
Analytical limit of the folded geometry. Once folded, the hypar
pattern buckles out of the plane into a saddle-shaped shell to
resolve the fundamental incompatibility between the in-plane
strain induced by folding and its three-dimensional embedding32.
Each panel in the pattern is subjected to twisting along its
longitudinal direction32. Performing a simple surgery of cutting
one corrugation out, we observe an immediate release of the twist,
causing the corrugation to lose compatibility as we try to fit it
back onto the folded shell, as demonstrated by the insets in
Fig. 2a, b. The folded hypar sheet has two orthogonal symmetry
planes spanned by the diagonal creases, which divide the shell
into four symmetric pieces, each within a quadrant of the x, y-
plane. From a homogenized view of the global deformation, we

a b c

Fig. 1 The folded shapes of concentrically pleated square (and diagonals) models made by paper. From a far distance, the three structures look similar;
however, as we zoom in, we notice differences in their local patterns. a The saddle shape folded from the standard hypar pattern with uniform offsets
between squares, as indicated by the green marks. b The similar saddle shape folded from a functionally graded hypar pattern with increasing offsets from
the center to the outside. c The similar saddle shape folded from a random hypar pattern with random offsets between square creases. Perhaps this
explains the popularity of the hypar origami: it is beautiful, simple, and tolerates local geometrical variations (e.g., uniform, graded, and random offsets);
however, the global shape displays geometric invariance
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define a surface that describes the shape of the corrugated shell.
We cannot assume smoothness at the joint between any two
pieces of surface from adjacent quadrants due to the inherent
discrete nature of the square hypar. Nevertheless, within each
quadrant, the piece of surface is supposed to be a smooth ruled
surface bounded by two curves, which can be parametrized as:

Xðr; tÞ ¼ ð1� tÞζðrÞ þ tξðrÞ; 0 � t � 1; ð1Þ
where ζ(r) and ξ(r) are curves lying on the symmetry planes
constructed approximately by the folded diagonal creases. The
straight corrugations resemble rulings.

The hypar origami is not rigid foldable based on its original
pattern31. To analytically describe the geometry of each deformed
corrugation, we assume that the deformations are isometric, and
straight creases remain straight, which requires the introduction
of at least one additional diagonal pleat in each trapezoidal panel
to triangulate the pattern35,36. We adopt the alternating
asymmetric triangulation of Demaine et al.31 as it satisfies the
reflection symmetry required by our present analytical model (see
Supplementary Fig. 1). We parametrize a corrugation by one
folding angle ρ ϵ [0, π] and two bending angles θ1, θ2 ϵ [0, π],
considering panel width d and folding ridge length L, as shown in
Fig. 2c. The dimensionless width w = (d/L) of a corrugation
quickly vanishes away from the center. Denoting n as the number
of square creases counted from the center, for a standard hypar

pattern, we see that (d/L) = 1/(2n), regardless of the actual
dimension of the pattern. In the limit of w→ 0, the twisting angle
γ of a long corrugation becomes the average of θ1 and θ2. Due to
orthogonality of the two symmetry planes, the virtual faces ΔABC
and ΔD′E′F′ must be perpendicular to each other (see Fig. 2).
Compatibility in radial directions further requires that θ1 = θ2.
Detailed derivations are presented in Supplementary Note 1.
Thus we have

lim
w!0

γ ¼ θ1 ¼ θ2; and lim
w!0

cosγ ¼ cos2ðρ=2Þ: ð2Þ

The fact that θ1 = θ2 leads to ΔABC ≅ ΔD′E′F′, which implies
that ζ(r) and ξ(r) have the same constituents at the outer rims,
and thus we may assume that ζ(r) and ξ(r) have the same shape,
but opposite orientations (see Fig. 2d). Eventually, the twisted
opening angle of a long corrugation (ψ′ in Fig. 2b) becomes

lim
w!0

cosψ′ ¼ cosγ� 1: ð3Þ

We remark that the same identities resulting from an
asymptotic analysis can be obtained using the other triangulation
scheme, i.e. the asymmetric triangulation31. The same conclusion
based on the two triangulation schemes reveals that there are
fundamental constructions of the folded hypar pattern, which are
independent of local deformations between creases (i.e., within
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Fig. 2 Schematic of the global and local configurations of a hypar origami. a A surgery on the hypar origami takes out a twisted corrugation, which untwists
into a simple straight fold. The black arrows indicate surface normals. b We describe the global saddle shape of a hypar folded shell by the union of four
pieces of ruled surface subject to reflection symmetry. Each corrugation resembles a ruling fiber. A folded corrugation must be twisted to satisfy the global
compatibility constraint. The circular insets show a projection view looking through the longitudinal axis of a corrugation. c Plan and elevation views of a
folded corrugation before twisting. The folding angle ρ, and two bending angles θ1, θ2 are labeled. d The construction of curves ξ and ζ. The black lines show
the folded diagonal creases of the hypar origami. e The analytical curves that relate the global geometry of a hypar origami measured by kr with the local
geometry of a corrugation measured by the folding angle ρ, opening angle ψ, and twisting angle γ. Experimental and numerical data are sampled from the
scanned and simulated models, respectively
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panels), as we take the limit to when each corrugation becomes a
fiber on the homogenized surface.

Choosing a convenient coordinate system as shown in Fig. 2a,
we simplify the parametrization of the surface in the first
quadrant to:

Xðr; tÞ ¼ ½tr; ð1� tÞr; ð2t � 1ÞξðrÞ�; r � 0; 0 � t � 1; ð4Þ
given ξ(r) = [r, 0, ξ(r)], where each entry denotes a Cartesian
component of a vector in real space. When w→ 0, each
corrugation becomes an infinitesimally thin ruling fiber connect-
ing points M and N on the two bounding curves, respectively (see
Fig. 2b). Thus we realize that

XM
r

XM
r

�� �� � eAC
eACk k and

XN
r

XN
r

�� �� � eD0F0

eD0F0k k ; ð5Þ

where eIJ denotes the vector from points I to J (I, J = A, C, D, F,
D′, F′, see Supplementary Fig. 2). The twisting angle γ of a
corrugation is equal to the change of surface normal traveling
along the corresponding ruling. Thus, we obtain two identities
that relate the local geometry of corrugations with the global
geometry of the folded shell:

cosγ ¼ nM � nN; and cosψ′ ¼ XM
r � XN

r

XM
r

�� �� XN
r

�� �� : ð6Þ

The surface tangents and normals can be derived by
differentiating Eq. (4). Substituting Eq. (6) into Eq. (3), we
reduce the problem of finding the shape of a surface to solving an
ordinary differential equation (ODE) of the one dimensional
function ξ(r) (see Supplementary Note 2). The ODE reads

2ξðrÞ � rξ′ðrÞð Þ 2rξ′ðrÞ3 þ 3rξ′ðrÞ � 2ξðrÞ� � ¼ 0; ð7Þ
which is satisfied whenever either:

2ξðrÞ � rξ′ðrÞ ¼ 0; ð8Þ
or,

2rξ′ðrÞ3 þ 3rξ′ðrÞ � 2ξðrÞ ¼ 0: ð9Þ
If Eq. (8) is zero, we obtain the elegant solution:

ξðrÞ ¼ kr2; ð10Þ
where k is an arbitrary real constant. Thus we obtain the surface
parametrization in the x, y, z coordinates as:

Xðr; tÞ ¼ ½± tr; ± ð1� tÞr; ð2t � 1Þkr2�; r � 0; 0 � t � 1:

ð11Þ
The signs of the x and y values have four different

combinations, covering the four quadrants of the x, y-plane.
Consequently, we can express the local folding angles as functions
of k and r, as shown in Fig. 2e.

The unexpected solution. A solution to Eq. (9) implies concavity
for increasing ξ and convexity for decreasing ξ, as shown in Fig.
3a, which does not agree with our observations of the standard
hypar origami (that has a saddle shape). Interestingly, the unex-
pected shape is only achieved if we cut slits on the hypar pattern
to make it a kirigami, as shown in Fig. 3b–d.

Differentiating Eq. (9) with respect to r, we obtain

ξ′′ðrÞ ¼ � 2ξ′ðrÞ3 þ ξ′ðrÞ
3rð2ξ′ðrÞ2 þ 1Þ : ð12Þ

If ξ′(r) ≥ 0, any real solution to Eq. (9) leads to ξ′′ ≤ 0, and thus
we get a concave function when ξ is increasing; on the other hand,
ξ′′ ≥ 0 if ξ′(r) ≤ 0, and thus the function must be convex when ξ
decreases. We can solve the ODE in Eq. (9) numerically. An
example for ξ(1) = 1 is shown in Fig. 3a. Indeed, this solution

arises from the fact that Eq. (3) is only a necessary condition to
the compatibility constraints. It is possible to satisfy Eq. (3),
without complying with the compatibility constraints that we
considered, by cutting slits on the crease pattern to make it a
kirigami. The hypar-based kirigami gains extra degrees of
freedom in folding and allows Eq. (3) to be satisfied, as
demonstrated in Fig. 3b. Therefore, a solution to Eq. (9) does
not describe the shape of a naturally folded hypar origami.

Invariance of the analytical limit. The configuration of a folded
hypar origami is drawn from Eq. (11), which is the solution of the
differential Eq. (8). We use symmetry to join the four pieces of
surface together—a serendipitous finding is that the surface
tangents and normals on the joint curves are consistent for any
two adjacent pieces. There is no kink on the entire surface of the
folded hypar shell, from a global homogenized viewpoint. How-
ever, Eq. (11) is not intuitive to interpret, as k and r change
simultaneously when tracking a point on the curve ξ. Therefore,
we rewrite ξ as a function of k and p, where p is the distance of a
point from the pattern centroid in the initial flat configuration,
which remains unchanged for each point on ξ (see Supplementary
Fig. 4). The new function, denoted as ~ξ, is given by (see Sup-
plementary Note 3):

~ξðk; pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8p2k2 þ 1

p � 1

4k
: ð13Þ

Accordingly, the hyperbolic paraboloid surface can be
reparametrized as:

~Xðp; tÞ ¼
± t

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8k2p2þ1

p
�1

k2

q
;

± 1�t
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8k2p2þ1

p
�1

k2

q
;

ð2t � 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
8p2k2þ1

p
�1

4k

2
66664

3
77775; p � 0; 0 � t � 1; ð14Þ

which maps p, t to the three-dimensional x, y, z-space, given
coefficient k. We find that z = k(x2 − y2), indicating that the
hypar origami folds asymptotically to a smooth surface of
hyperbolic paraboloid, which is maintained along the whole
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Fig. 3 Solution to ODE Eq. (9), and its realization. a A solution to Eq. (9)
solved numerically by assuming ξ(1) = 1. b–d By cutting slits on the hypar
crease pattern to make it a kirigami, we can realize the solution to Eq. (9),
which satisfies Eq. (3), but breaks the compatibility constraints. c Top view
of the folded hypar kirigami. Slits are cut along the diagonals. Detailed view
of a slit is shown in the inset. d Side view of the folded hypar kirigami.
Diagonal creases approximate the solution of ξ given by Eq. (9)
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folding process. Intuitively, the more a hypar pattern is folded, the
deeper the saddle, and the larger the k. This is quite a unique
feature, as other approaches of folding a flat sheet into a
hyperbolic paraboloid only guarantee to match the shape at a
specific transient time during folding8.

Moreover, the hyperbolic paraboloid shape is maintained as
long as the dimensionless width w of a corrugation vanishes away
from the center, regardless of the actual value of d. We can assign
non-uniform values to d, and still get a folded shape that
approximates a hyperbolic paraboloid. In Fig. 4, we use three
examples to illustrate this idea. In Fig. 4a, d is uniformly assigned
(standard hypar pattern); in Fig. 4b, d is gradually increasing
away from the center (functionally graded hypar pattern); in Fig.
4c, d is randomly assigned by a uniform distribution between two
bounding values, ensuring that wmax = (dmax/L)→ 0 (random
hypar pattern).

Connecting geometry with mechanics. With an analytical
description of the global homogenized geometry of the hypar
pattern, we can associate the mechanical behavior of the pattern
with its geometry by expressing the system energy in terms of the
folding kinematics. First, let us consider how a hypar origami

folds into a stable saddle shape. We start from a flat hypar pat-
tern, and forcefully fold up the pattern. After the origami is folded
into shape, the folding creases undergo inelastic deformation,
which shifts the neutral (i.e., stress free) angles of the folding
hinges from zero to the angles at a folded state with shape
coefficient k= k0 (see Eq. 10). However, the panels undergo
elastic deformation, as we observe that they return to the initial
flat configuration once cut out from a folded hypar origami. Thus,
we assume that the bending hinges still have their neutral angles
equal to zero, which corresponds to the state at k= 0. A stable
configuration is drawn by minimizing the system total energy
(ET).

Because we assume isometry for the analytical model, we have
ET = EF + EB, where EF denotes the folding energy and EB
denotes the bending energy. To derive EF and EB, we need to draw
explicit maps between the global configuration and local angles.
For instance, we obtain (see Supplementary Note 3):

ρ ¼ ρðk; pÞ ¼ cos�1 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8k2p2 þ 1

p � 1

 !
; ð15Þ

β ¼ βðk; pÞ ¼ π � 2sin�1

ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8k2p2 þ 1
pq

0
B@

1
CA; ð16Þ

θ ¼ θðk; pÞ ¼ cos�1 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8k2p2 þ 1

p
 !

; ð17Þ

where the folding angles of the corrugation crease and the
diagonal crease are denoted as ρ and β, respectively (see
Supplementary Fig. 3), and θ is the bending angle. Here we
adopt the k, p-parametrization for ease of comparison between
different folded states. We can then derive the folding and
bending energy as:

EF ¼ 4
Z P

0
�η ð ffiffiffi

2
p

pÞHρ
F þHβ

F

h i
dp; ð18Þ

EB ¼ 4
Z P

0
�ηð ffiffiffi

2
p

pÞHθ
Bdp : ð19Þ

In Eq. (18), P defines the size of the pattern, �η is determined by
the distribution of creases (see Supplementary Fig. 5), and ð ffiffiffi

2
p

pÞ
refers to the length of a corrugation crease in the limit of w→ 0.
We define Hρ

Fðρðk; pÞÞ and Hβ
Fðβðk; pÞÞ as the stored energy

functions associated to folding of the corrugation creases and the
diagonal creases, respectively. As for the bending energy defined
in Eq. (19),Hθ

Bðθðk; pÞÞ is the associated stored energy function of
bending creases. We make the following basic assumptions:

Hβ
F � 0;

∂2Hβ
F

∂β2
>0;

∂Hβ
F

∂β

�����
β¼β0

¼ 0; ð20Þ

Hρ
F � 0;

∂2Hρ
F

∂ρ2
>0;

∂Hρ
F

∂ρ

����
ρ¼ρ0

¼ 0; ð21Þ

Hθ
B � 0;

∂2Hθ
B

∂θ2
>0;

∂Hθ
B

∂θ

����
θ¼0

¼ 0: ð22Þ

We define the neutral angles of β0 and ρ0 as the folded angles at
state k= k0. The energy functions (18) and (19) allow us to
interpret the mechanical behavior of the hypar pattern. Since the
shape coefficient k appears in Eqs. (18) and (19) in its quadratic
form (i.e., k2), we conclude that symmetry of system energy (with
respect to k) exists for k < 0 and k > 0. Furthermore, for 0 < k < k0,
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Fig. 4 Folded configurations of three triangulated hypar origami with
different panel widths display invariant hypar geometry (same patterns as
in Fig. 1). The three origami patterns have the same number of square
creases (counted from the center outwards), denoted by n. Every other
square crease is a mountain, and thus there are 10 mountain creases in
total. Two panels on the both sides of a mountain crease are assigned the
same width. All three concentrically pleated origami can fold approximately
into the same hypar shape, as indicated by the red quadratic curves.
a Standard hypar pattern: panel width d is a constant for all corrugations.
b Functionally graded hypar pattern: panel width d increases as n increases.
c Random hypar pattern: panel width d is a random variable for each
corrugation. Since the hypar patterns are triangulated, folding is achieved
by rigid origami simulation36. The left images show the 3D views of the
folded hypar origami. The middle images show the side views. The right
images present quantitative measures. The blue dots (each dot
corresponds to a mountain) in the charts show how (d/L) vanishes as n
increases. The green dots show the residual (or error) of Eq. (2) when n
is finite
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we find that ∂ET/∂k < 0 when k→ 0, and ∂ET/∂k > 0 when k= k0.
Therefore, there must exist a local minimum of ET at 0 < k* < k0.
Owing to the symmetry of system energy in k, there is another
local minimum of ET at −k0 <−k* < 0. As a result, the system is
guaranteed to exhibit bistability, and the two bistable states are
symmetric. The reader is referred to Supplementary Note 3 for
details of the derivation.

Physical shape of folded hypar origami. In reality, it is nearly
impossible to confine isometric deformations while folding a
hypar pattern due to the in-plane compliance of real materials.
However, as thin elastic sheets usually deform in near-isometric
states37–39, we find that the analytical result, based on isometric
folding, provides good approximations for the global and local
geometries of a hypar origami made with real materials.

To investigate the subtleties of this near-isometric behavior, we
fabricate two physical models with different thickness and capture
their shapes using a 3D scanner. To visualize their in-plane and
out-of-plane deformations, we compute the Gaussian curvature
(K) and mean curvature (H) of the scanned surfaces40. For an
initially flat sheet, in the small strain limit, the energy associated
with stretching and bending increase with the magnitudes of K
and H, respectively37,39. The ratio of bending to stretching energy
for a thin elastic sheet is proportional to h239. Therefore, thinner
sheets favor less in-plane stretch than thicker sheets, as shown in
Fig. 5a–d, where the thicker panels display larger K, while the
thinner panels show larger H. In addition, stronger singular ridge
effect38,39 is found in the thinner origami. The twist of thinner
panels creates local wrinkles near the ends of long panels,
associated with zig-zag lines of Gaussian curvature concentration,
as shown in Fig. 5c, d.

Closer examinations in Fig. 5e–i reveal that each panel displays
a dominant diagonal about which the panel bends more than the
other diagonal. Figure 5f, g is a schematic that shows the
difference between an isometrically deformed origami panel and a
non-isometrically deformed origami panel, assuming that straight
creases remain straight. An isometrically deformed origami panel
will display a single curvature because the Gaussian curvature is
zero everywhere inside the panel. On the other hand, a non-
isometrically deformed origami panel displays double curvature
(negative Gaussian curvature) because this deformation mode
stores less elastic energy. For the thinner panels as shown in Fig.
5h, by comparing the depth of bending (the black lines), we
identify obvious dominant diagonals (AE and E′C) that align with
the alternating asymmetric triangulation. In Fig. 5i, we also see
that the dominant diagonals are AE and E′C for the thicker hypar
model; however, the more in-plane deformation makes the
dominant out-of-plane bending diagonals less distinguishable as
in the thinner panels.

We collect positional information from the 3D images to
compare with the analytical predictions in Fig. 2e. We sample
coordinates of the mountain vertices to get estimates for the
coefficient k. We then pick the middle points of square creases to
form a zig-zag path (i.e., the green lines in Fig. 5e) to estimate the
folding angles (ρ) of the corrugations.

Folding and snapping by numerical simulations. To study the
mechanical behavior of the hypar origami considering non-
isometric deformations, we conduct nonlinear structural analyses
using the reduced order bar-and-hinge model (see Supplementary
Fig. 6)41,42. Two numerical models are built for the cases of h=
76.2 μm and h= 127 μm.

In the numerical simulation, we first fold up a flat pattern into a
folded state, and then shift the neutral angles of the folding hinges
accordingly, allowing the pattern to find a new equilibrium after
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releasing the applied folding forces (see Supplementary Fig. 7 and
Supplementary Movie 3). Comparing the equilibrium configura-
tions of both numerical models with the analytical prediction, we
find good agreement as shown in Fig. 2e. Eigenvalue analysis on the
stiffness matrix at the equilibrium configuration of the thinner
model shows that the hypar folding mode possesses a much lower
energy cost than other deformation modes, ~5% to the next
smallest eigenvalue, which is an evident implication that the non-
rigid hypar pattern has nearly a single degree of freedom. Zooming
into each panel, both models display dominant bending diagonals
forming the alternating asymmetric triangulation (see Supplemen-
tary Fig. 8), agreeing with the experiments.

The snapping between the two stable states is a rapid process,
which happens with the blink of an eye (0.1–0.4 s43), as captured

in Fig. 6a. Our numerical simulation captures this bistable
snapping in a quasi-static manner, and the results are presented
in Fig. 6b–f. The change of stored energy during the snapping
deformation is compared to the analytical prediction, i.e. Eqs.
(18) and (19), in Fig. 6g, h, using the same constitutive models for
folding and bending hinges as used in the bar-and-hinge model
(see Supplementary Note 4). We obtain very nice agreement: the
folding energy matches almost perfectly; the bending energy is
overestimated, but it is because, by construction, the numerical
model has richer kinematics than the analytical model, as the later
ignores in-plane deformation and its associated energy ES. The
snapping process does not require the pattern to be completely
flattened, owing to the presence of in-plane deformation. We
observe severe tension in the central region and strong
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compression at outer rims (see Fig. 6f). The outermost panels of a
physical model often exhibit compressive buckling during the
snapping, especially with relatively soft materials such as paper34.

The bistable snapping of the hypar origami produces two stable
states that are symmetric to each other, as the analytical model
predicts. The mountain-valley assignment also remains the same
before and after snapping. We observe that the angles of the
folding hinges of the hypar origami remain the same at both
stable states, as shown in Supplementary Fig. 8. However, each
individual panel reverses its twisting directions during the
snapping. On the contrary, most bistable origami structures
display distinct global configurations at their bistable states, such
as the square twist origami22 and the Kresling pattern19.

Hypar tessellation with many stable states. If we assemble
several copies of the hypar pattern in a planar array, then after
folding, we obtain origami metasurfaces that exhibit multiple
stable states. In Fig. 7, we demonstrate this idea by assembling a
2 × 2 array of hypar patterns, known as the 4-hat44, whose crease
pattern is shown in Fig. 7a. This metasurface has 32 stable states,

which is doubled the binary combinations of bistable units (i.e.,
24= 16). The reason is because when we put four hypar origami
together, globally they form a vertex of positive Gaussian curva-
ture in the center, as indicated by the gray circles in Fig. 7c, which
can either pop-up (+) or pop-down (−). Hence, we create an
origami metasurface that has 2(24)= 32 stable states. Among the
32 stable states, 12 of them are unique up to rotational symmetry,
and 6 of them are distinct in terms of approximate global shape.
This idea can lead to programmable metasurfaces and metama-
terials, which may have important applications in energy trap-
ping45, and micro electronic devices7.

Discussion
Our study shows that folding concentrically pleated squares
produces shapes that asymptotically approach smooth hyperbolic
paraboloids. Such a global saddle shape is strongly constrained by
geometry and quite robust to some variations of the crease pat-
tern (see Figs. 1 and 4). Implied by our study, a unique feature of
the hypar origami is that throughout its folding process, the
folded geometry is always a hyperbolic paraboloid, except for
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different shallowness, which can be very useful for optical
applications46. We further prove that the bistability of the hypar
origami exist unconditionally to produce two symmetric stable
configurations, when a few basic assumptions are satisfied. Our
theoretical analysis is verified by experiments and numerical
simulations.

Along with previous work on circular curved folds12,13, our
study proposes an analytical framework for homogenizing non-
periodic local folds to establish a differential map of the global
geometry, which can be used as a basis to investigate other cor-
rugated origami shells, such as concentrically pleated patterns
with polygonal outlines. Furthermore, we provide an example in
the use of the hypar pattern as a bistable constituent in a mul-
tistable metasurface. In fact, recent papers47,48 have pointed out
an observable paradigm shift, away from avoiding instabilities to
harnessing instabilities, which could be explored with the hypar
origami. In summary, we offer an example of bistable behavior
that emerges inherently from the geometry of folding.

Methods
Fabrication and testing of physical samples. The two physical models are made
of Mylar sheets with two different thicknesses (h): 127 μm (0.005 inch) and 76.2 μm
(0.003 inch). We use Mylar sheets instead of regular paper because it has a more
homogeneous and isotropic elastic behavior. The average modulus of elasticity of
the Mylar material for all directions is Y= 5 GPa (725 ksi), and we assume the
Poisson’s ratio to be ν= 0.35. The size of the models are characterized by panel
width d= 8 mm. The predefined creases are perforated by slots, whose lengths add
up to approximately one half of a crease. We use a Silhouette CAMEO machine
(Silhouette America Inc., Utah) to prepare the perforated patterns. The two pat-
terns are then gently hand folded to similar shapes. We use a hand-held 3D scanner
(Artec Spider Scanner, Artec 3D, Luxembourg) that provides three-dimensional
images with resolution up to 0.1 mm. In reference to Fig. 5, we crop one corru-
gation (two adjacent panels) from each of the scanned surfaces of the thicker
and thinner model, and compute the average Gaussian curvatures inside the
panels. The average Gaussian curvature of the thicker corrugation is equal to
−1.0135 × 10−4, while the average Gaussian curvature of the thinner corrugation
is −0.9589 × 10−4, i.e., a negative value with smaller magnitude, verifying that the
thinner panels favor less in-plane stretch.

Numerical simulations. The numerical simulations are performed using the
MERLIN software42, which implements the bar-and-hinge model for nonlinear
analysis of origami structures41,42. A nonlinear elastic formulation describes the
constitutive behavior of each element in the model42,49. Please see the Supple-
mentary Note 4 for more details on the bar-and-hinge model and the nonlinear
elastic formulation. The nonlinear equilibrium problem is solved by the Modified
Generalized Displacement Control Method, which is able to trace highly nonlinear
equilibrium paths50. We discretize a quadrilateral panel into four triangles, and
represent the origami behavior by capturing three essential deformation modes:
folding, panel bending, and stretching.

Data availability
The authors declare that the data generated or analyzed during this study are included in
this article and its supplementary files.

Code availability
The MERLIN software (MATLAB code) used for the numerical simulations in this article
is available at http://paulino.ce.gatech.edu/software.html.
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Supplementary Note 1: Geometry of corrugations

There are two options to triangulate the hypar pattern [1]: one is shown in Fig.1(a), known

as the alternating asymmetric triangulation, and the other is shown in Fig.1(b), known as

the asymmetric triangulation. Although we find that both triangulation schemes yield the

same results, we report the derivation based on the alternating asymmetric triangulation

because it is kinematically preferred for large folding [1], and it relates closely to the natural

bending of hypar panels as we show in our research. In this section we address the geometry

of corrugations. We first parametrize a single corrugation by one folding angle ρ ∈ [0, π] and

two bending angles θ1, θ2 ∈ [0, π], considering panel width d and middle ridge length L. For

the coupled panels ABCDEF shown in Fig. 1(c), its middle ridge is a folding crease labeled

as BE, whose length equals L. For convenience of derivation, we set our coordinate system

so that the panel BCFE is on the xy plane and point E coincides the origin. Without loss of

generality, we scale the dimension of the structure by L, and then the panel width becomes

the relevant dimensionless quantity w := d/L. For folded corrugation before twisting, the

coordinates of points after scaling are given as:

Ax = 1− w, Ay = w cos ρ, Az = w sin ρ

Bx = 1, By = 0, Bz = 0

Cx = 1 + w, Cy = −w, Cz = 0

Dx = w, Dy = w cos ρ, Dz = w sin ρ

Ex = 0, Ey = 0, Ez = 0

Fx = −w, Fy = −w, Fz = 0 (1)

For isometric folding of the triangulated model (using alternating asymmetric triangula-

tion), twisting of a corrugation is achieved by bending about diagonals of the two panels.

For example, the bending of panel ABED is realized by rotating triangle 4ADE about the

diagonal EA with angle θ1, as illustrated in Fig. 1(d). Using Rodrigues’ rotation formula

[2], we obtain the vector eED after rotation by

eED’ = cos θ1eED + sin θ1(
eEA

‖eEA‖
× eED) + (1− cos θ1)(

eEA

‖eEA‖
· eED)

eEA

‖eEA‖
. (2)

Because E’ remains the same as E (located at the origin), then we can write the new
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Supplementary Figure 1. Geometry of corrugations for the hypar pattern – dashed lines indicate

extra pleats introduced by triangulation. (a) Alternating asymmetric triangulation. (b) Asymmet-

ric triangulation. (c) A folded corrugation before twisting. (d) A folded corrugation after twisting.

(e) Twisted configuration of an augmented system considering two adjacent corrugations, where

panel BCF’E’ is shared.

coordinates of point D as:

D’x =
w((2w − 1)w cos θ1 − w + 1)

2(w − 1)w + 1

D’y =
w
(

(2w − 1)
√

2(w − 1)w + 1 sin θ1 sin ρ+ cos ρ((w − 1)(2w − 1) cos θ1 + w)
)

2(w − 1)w + 1

D’z =
w
(

(1− 2w)
√

2(w − 1)w + 1 sin θ1 cos ρ+ sin ρ((w − 1)(2w − 1) cos θ1 + w)
)

2(w − 1)w + 1
(3)

Similarly, we derive the new coordinates of point F as:

F’x =− w((2w + 1)w cos θ2 + w + 1)

2w2 + 2w + 1

F’y =− w ((2w2 + 3w + 1) cos θ2 − w)

2w2 + 2w + 1

F’z =− w(2w + 1) sin θ2√
2w2 + 2w + 1

(4)
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The other points remain unchanged – see Fig. 1(d).

To account for the two reflection symmetries of the entire folded shell, and considering

the orthogonality of the two symmetry planes, the normals of the faces 4ABC and 4D’E’F’

must be orthogonal, as illustrated by Fig. 1(d). Accordingly, the normals of the faces4ABC

and 4D’E’F’ are given by:

~nABC = (eBA × eBC)/(2w2) (5)

~nD’E’F’ = (eE’D’ × eE’F’)/(2w
2) (6)

respectively. In the limit w → 0, we obtain

lim
w→0

~nD’E’F’ = [sin(θ1 − θ2 + ρ), sin θ2 − sin(θ1 + ρ), cos(θ1 + ρ)− cos θ2] /2, (7)

lim
w→0

~nABC = ~nABC = [sin ρ, sin ρ, 1− cos ρ] /2. (8)

Thus the orthogonality condition yields:

lim
w→0

(~nABC · ~nD’E’F’) = 0 =⇒ (9)

(cos ρ− 1)(cos θ2 − cos(θ1 + ρ)) + sin ρ(sin θ2 − sin(θ1 + ρ)) + sin ρ sin(θ1 − θ2 + ρ) = 0.

The above constraint enforces compatibility around the circumferential direction.

Now let’s consider compatibility in the radial direction. We augment the structure by

considering the next corrugation that shares the panel BCFE with the one we just analyzed

– see Fig. 1(e). Notice the interesting fact that the mountain-valley assignment is opposite

for crease lines BE and CF. After the twist, to ensure that the two corrugations comply

with the global symmetries, the normals of 4E’F’G’ and 4BCH’ must be parallel with the

normals of face 4D’E’F’ and 4ABC, respectively. Realizing that eE’B (= eEB) is parallel

to eF’C in the limit, the following constraints must be satisfied:

lim
w→0

(~nD’E’F’ · eEB) = lim
w→0

(~nE’F’G’ · eF’C) , (10)

lim
w→0

(~nABC · eEB) = lim
w→0

(~nBCH’ · eF’C) , (11)

where

~nBCH’ = (eCH’ × eCB)/(2w2),

~nE’F’G’ = (eF’G’ × eF’E’)/(2w
2). (12)
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Again, in the limit of w → 0, the two corrugations essentially yield the same angular

relationships, and the small variation in folding angle δρ vanishes along with w – see Fig.

1(e). Therefore, one infers that the twisted corrugation BCH’E’F’G’ is simply ABCD’E’F’

flipped. As a result, we obtain the following identities:

lim
w→0

(~nBCH’ · eF’C) = lim
w→0

(~nD’E’F’ · eEB) , (13)

lim
w→0

(~nE’F’G’ · eF’C) = lim
w→0

(~nABC · eEB) . (14)

Thus,

lim
w→0

(~nABC · eEB) = lim
w→0

(~nD’E’F’ · eEB) , (15)

which leads to,

sin ρ = sin(θ1 − θ2 + ρ). (16)

Considering the definition ranges of the angles and observations of physical models, we

should reduce the above identity to the simple fact that in the limit (w → 0):

θ1 = θ2, (17)

which leads to ∠ABC = ∠D’E’F’, and hence 4ABC ∼= 4D’E’F’. Substituting Eq. (17) to

Eq. (9), we obtain

(1− 2 cos θ1 + cos ρ) sin2(ρ/2) = 0. (18)

For ρ > 0, the above expression reduces to:

cos θ1 = cos2(ρ/2). (19)

Next, we derive the amount of twisting of a corrugation in terms of ρ, θ1 and θ2. The

axis of twisting is labeled as eMN in Fig. 2 of the main text, where M can be regarded as

the middle point of AC, and N can be regarded as the middle point of D’F’. Although eMN

should be defined after twisting the corrugation, we can see that in the limit, w → 0, eMN

is parallel to eE’B (= eEB). The twisting angle γ about axis eMN satisfies

eD’F’

‖eD’F’‖
= cos γ

eDF

‖eDF‖
+sin γ

(
eEB

‖eEB‖
× eDF

‖eDF‖

)
+(1−cos γ)

(
eEB

‖eEB‖
· eDF

‖eDF‖

)
eEB

‖eEB‖
. (20)

As shown in Fig. 2, we define the opening angles ψ and ψ′ before and after twisting,

respectively, such that

cosψ =
eDF

‖eDF‖
· eAC

‖eAC‖
, and cosψ′ =

eD’F’

‖eD’F’‖
· eAC

‖eAC‖
. (21)
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Taking into account that θ1 = θ2, we observe that

cosψ = 1− 4

cos ρ+ 3
, and lim

w→0
cosψ′ = cos θ1 −

2(1 + cos θ1)

cos ρ+ 3
. (22)

Now we multiply both sides of Eq. (20) by (eAC/‖eAC‖). By doing so, we derive the following

relationship:

cosψ′ = cos γ cosψ − (1− cos γ)

(
2

cos ρ+ 3

)
. (23)

Substituting Eq. (22) into (23), we obtain the following identity in the asymptotic limit:

Supplementary Figure 2. Illustration of the ψ and ψ′ angles. (a) A corrugation before twisting.

(b) A corrugation after twisting. (c) Geometric relationship between ψ, ψ′, and γ.

cos γ = cos θ1, (24)

which directly leads to γ = θ1 = θ2. We use this result to simplify the expressions of ρ and

ψ′, and we get

lim
w→0

cos γ = cos2(ρ/2), and lim
w→0

cosψ′ = cos γ − 1, (25)

as presented in the main text. Notice that Eq. (25) are only necessary conditions to the

compatibility constraints.

Supplementary Note 2: Establishment of the ODE

Setting a coordinate frame as shown in Fig. 2(a) of the main text, the piece of surface

that conforms the geometry of the hypar folded shell in a quadrant can be parametrized as:

X(r, t) = (1− t)[0, r, ζ(r)] + t[r, 0, ξ(r)], (26)
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considering that

ξ(r) = [r, 0, ξ(r)], and ζ(r) = [0, r, ζ(r)]. (27)

Based on observations of the physical model, we assume that the hypar origami surface is a

graph, which has a unique projection onto the xy-plane. This parametrization of the global

surface indicates that the projection of each loop of square crease onto the xy-plane remains

a square but of a smaller size after folding, which is an assumption based on observation. In

the geometric analysis, we find that 4ABC ∼= 4D’E’F’ in the limit of w → 0, which implies

that ζ(r) and ξ(r) have the same constituents at the outer rims, as demonstrated in Fig.

1(e). Thus we may assume that ζ(r) = −ξ(r), which leads to a simplified parametrization

of the surface in the first quadrant as:

X(r, t) = [tr, (1− t)r, (2t− 1)ξ(r)] , r ≥ 0, 0 ≤ t ≤ 1. (28)

Indeed, we have reduced the problem of finding the shape of the meta-surface to establishing

an ODE for the one dimensional function ξ(r). To establish the ODE, we will use the previous

geometric relationships derived locally for each corrugation. Due to the coordinate system

we choose, the initial condition is ξ(0) = 0. We may also assume that ξ is a monotonically

increasing convex function or monotonically decreasing concave function based on inspection

of the actual shape of a folded hypar origami.

From a global view, we can define four tangent vectors at points M and N on the surface

as follows:

XM
r =

∂X

∂r
(r, 0) = [0, 1, −ξ′(r)] (29)

XM
t =

∂X

∂t
(r, 0) = [r, −r, 2ξ(r)] (30)

XN
r =

∂X

∂r
(r, 1) = [1, 0, ξ′(r)] (31)

XN
t =

∂X

∂t
(r, 1) = [r, −r, 2ξ(r)] (32)

We remark that XM
t = XN

t , and they both align with the direction of eMN. Computing the

two surface normal vectors at M and N, we obtain:

nM =
XM
r ×XM

t

‖XM
r ×XM

t ‖
=

[2ξ(r)− rξ′(r), −rξ′(r), −r]√
r2 + r2ξ′(r)2 + (2ξ(r)− rξ′(r))2

, (33)

nN =
XN
r ×XN

t

‖XN
r ×XN

t ‖
=

[rξ′(r), −2ξ(r) + rξ′(r), −r]√
r2 + r2ξ′(r)2 + (2ξ(r)− rξ′(r))2

. (34)
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The normals on two bounding curves may not be consistent for the two adjacent pieces of

surface because there is no guarantee of first-order continuity at the joints. Therefore, we

cannot assume that the x component of nM and the y component of nN are zeros. The

discrete vectors eAC and eD’F’ are approximations of XM
r and XN

r , respectively. In addition,

the twisting angle γ from the local analysis relates to the change between surface normals

nM and nN. Because both normals are orthogonal to eMN, we write

cos γ = nM · nN. (35)

Furthermore, using Eq. (25) and (21), we obtain

cos γ =
eAC · eD’F’

‖eAC‖‖eD’F’‖
+ 1 =

XM
r ·XN

r

‖XM
r ‖‖XN

r ‖
+ 1. (36)

Equating the above two expressions, we obtain a first order ordinary differential equation

(ODE):
(2ξ(r)− rξ′(r)) (2ξ(r)− 3rξ′(r)− 2rξ′(r)3)

(ξ′(r)2 + 1)
(
r2 (ξ′(r)2 + 1) + (2ξ(r)− rξ′(r))2) = 0. (37)

The denominator is always positive because ξ(r) and ξ′(r) are both real and positive. Thus

the ODE can be simplified to:

(2ξ(r)− rξ′(r))
(
2rξ′(r)3 + 3rξ′(r)− 2ξ(r)

)
= 0. (38)

This is the main result of this section. The solution of the governing ODE above is discussed

in Eqs.(8) to (10) of the main text.

Supplementary Note 3: Origami mechanics explained by geometry

In the isometric deformation model, the system stored energy is contributed by the fold-

ing creases and bending hinges (introduced by triangulation). Therefore, we first need to

associate angles of the local geometry with parameters of the global geometry. By Eqs. (36),

(25), and (24), we obtain:

cos ρ =
1− 4k2r2

1 + 4k2r2
, (39)

cos θ =
1

1 + 4k2r2
. (40)

Let’s denote φ as the angle between two consecutive diagonal creases, as shown in Fig. 3(a).
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Supplementary Figure 3. Angles at a typical vertex. (a) Angles labeled in the direct geometry. (b)

Angles labeled in the spherical representation at vertex B.

Applying spherical trigonometry at point B (see Fig. 3(b)), we obtain φ as a function of the

folding angle ρ:

cosφ = cos
π

4
cos

3π

4
+ sin

π

4
sin

3π

4
cos(π − ρ) = − 1

1 + 4k2r2
. (41)

Furthermore, we denote the folding angles along the diagonal as β, and the angles between

two square creases as χ. Due to the symmetry of the folded shape, we compute (χ/2) and

(β/2) instead of χ and β (see Fig. 3):

cos
χ

2
= eCA · eBE’ ≈ XM

t ·XM
r =

4k2r2 + 1√
16k4r4 + 12k2r2 + 2

, (42)

sin
β

2
=

sin(χ/2)

sin(π/4)
=

1√
2k2r2 + 1

. (43)

The degree-of-freedom (DOF) counting rule of origami patterns [3, 4] states that the

generic DOF of a two-dimensional triangulated origami pattern (embedded in three-

dimensional space) is given by the number of free boundary edges minus 3. The triangulated

hypar kinematic model has four free boundary edges, therefore, once folded in a certain way

(i.e., a kinematic branch is chosen), the triangulated hypar pattern has only one generic

DOF. However, as we fold a hypar pattern, we cannot use Eqs. (11) and (13) from the

main text to easily predict the trajectory of a certain point on the folded surface because

both the quadratic coefficient k and the r-coordinate of a point (denoted as r = R) change

9



simultaneously, despite the fact that the folding kinematics is associated to a single DOF.

This also makes it difficult to compare between different folded states. Let’s denote the

initial coordinate of a point on the diagonal creases as (P, 0) on the flat configuration, and

the current coordinate in the folded configuration as (R, ξ(k,R)). We would like to find

a direct mapping between (P, 0) and (R, ξ). Hence, we re-parametrize the curve ξ such

that the current coordinate is written in terms of P as (R(k, P ), ξ̃(k, P )). The derivation is

explained below.

Supplementary Figure 4. The shape of ξ during folding. (a) The changing shapes of ξ at different

folded states, and how a certain point on ξ changes its coordinate. (b) The local structure of ξ

consists of a series of zig-zag folds of the diagonal creases.

Fig. 4(a) illustrates how the shape of ξ changes and how a certain point on ξ changes

its coordinate. Recall that the local structure of ξ is constructed by zig-zags of the diagonal

creases of the hypar pattern (see Fig. 4(b)). Assuming that each corrugation is infinitesi-

mally thin, according to Fig. 4(b), we relate the differential length of diagonals (denoted as

dp) with the differential arc length (denoted as ds) of ξ by:

dp =
1

sin(φ/2)
ds. (44)

Furthermore, we relate dp with dr through ds [5]:

dp =
1

sin(φ/2)
ds =

√
1 + (ξ′)2

sin(φ/2)
dr. (45)

Integrating Eq. (45), we obtain the length of diagonal creases until the point (R, ξ(R)) on

ξ as follows:

P =

∫ R

0

√
1 + (ξ′)2

sin(φ/2)
dr =

∫ R

0

4k2r2 + 1√
2k2r2 + 1

dr = R
√

2k2R2 + 1, (46)
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As we assume isometric deformation for the analytical model, the initial coordinate P is

unchanged during folding for a point on the diagonal of a hypar pattern. Then we express

R in terms of k and P as:

R(k, P ) =
1

2

√√
8k2P 2 + 1− 1

k2
(47)

Since every value of R has a one-to-one correspondence with P , the shape of folded diagonal

curve ξ can be redefined on the unfolded length of diagonals (denoted as p), according to a

single changing geometric parameter k as:

ξ̃(k, p) = ξ(k, r(k, p)) =

√
8p2k2 + 1− 1

4k
. (48)

The angles can also be expressed as functions of k and p, which are given by:

ρ(k, p) = cos−1

(
2√

8k2p2 + 1
− 1

)
, (49)

β(k, p) = π − 2 sin−1

 √
2√

1 +
√

8k2p2 + 1

 , (50)

θ(k, p) = cos−1

(
1√

8k2p2 + 1

)
. (51)

With Eqs. (48) to (51), we can easily compare the positions of the points on the diagonal

curve at different folded states.

Before we associate the system energy with the geometry of the folded hypar, we need to

define a crease density function η(p) such that:

n =

∫ P

0

η(p)dp (52)

where n is the number of square creases counted from the center until point P . Strictly, η(p)

is a summation of a series of shifted Dirac delta functions with values only at the locations

of crease vertices along the diagonals (i.e. the line of p), which can be defined by:

η(p) =
n∑
i

δ(p− pi) (53)

where δ is the Dirac delta function, and pi’s denote the locations of crease vertices. The strict

definitions of n and η are shown in Fig. 5(a) and (b) by the solid lines, respectively. However,
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Supplementary Figure 5. The crease density function. (a) The crease counting function. The dots

represents the actual data points. The solid line shows the strictly defined continuous function

n(p), while the dashed line shows the smoothed version of n(p). (b) The crease density function

η(p) and homogenized crease density function η̄(p). The solid line refers to the strict definition,

while the dashed line refers to the homogenized version.

such a discrete definition is usually difficult to construct for large patterns. Therefore, we

propose a homogenized crease density function, which is defined as:

η̄(p) =
1

∆p

∫ p+∆p/2

p−∆p/2

η(q)dq =
∆n

∆p
, (54)

where ∆p is taken as an arbitrary interval. The η̄(p) function can be interpreted as the rate

of a smoothed function n changing over p, as shown in Fig. 5 by the dashed lines. We can

first interpolate the data points of (n, p) by a smooth function, and then differentiate it to

obtain η̄(p). For a standard hypar pattern with panel width d being a constant, η̄(p) is equal

to the constant (1/d). Because n cumulatively increases as p increases, then η̄(p) is always

a positive function.

We associate the elastic energy of the system with its geometry. Suppose that the enforced

folding has folded the pattern to a hyperbolic paraboloid with quadratic coefficient k0, which

defines the neutral angles of folding hinges. We define the stored energy of a folding hinge

per unit length (i.e., the underlining constitutive model) as a convex function about the

folding angle with the following properties:

Hρ
F(ρ) ≥ 0, with

∂2Hρ
F

∂ρ2
> 0, and

∂Hρ
F

∂ρ

∣∣∣∣
ρ=ρ0

= 0, (55)
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where ρ0 is the neutral (stress-free) angle of the folding hinge. Consequently, we know that

∂Hρ
F

∂ρ
< 0, when ρ < ρ0; and

∂Hρ
F

∂ρ
> 0, when ρ > ρ0. (56)

A similar constitutive model can be defined for the stored energy of β (folding) angles,

which is denoted as Hβ
F. Thus,

Hβ
F ≥ 0,

∂2Hβ
F

∂β2
> 0,

∂Hβ
F

∂β

∣∣∣∣
β=β0

= 0. (57)

where we designate the neutral angle as β0.

The constitutive model of a bending hinge is defined such that:

Hθ
B(θ) ≥ 0, with

∂2Hθ
B

∂θ2
> 0, and

∂Hθ
B

∂θ

∣∣∣∣
θ=θ0

= 0, (58)

where θ0 is the neutral (stress-free) angle of the bending hinge. Based on observation, the

panels untwist when they are cut out from a folded hypar. Hence, we can assume that the

neutral angles of bending hinges are at θ0 = 0, when all panels are flat (i.e. k0 = 0). Thus,

we obtain that:

∂Hθ
B

∂θ
< 0, when θ < 0; and

∂Hθ
B

∂θ
> 0, when θ > 0. (59)

The simplest constitutive model for folding or bending hinges that satisfies our assumption

is a quadric function. Please refer to Section Supplementary Note 4 of the Supplementary

Information for examples.

Denote the total elastic energy of a hypar pattern as ET, which is given by the summation

of bending and folding energy:

ET = EF + EB, (60)

for the triangulated model. Let P be the total length of diagonal creases from the center of

the pattern, such that (P, 0) is on the boundary of the pattern. The elastic energy stored

in the folding hinges is computed as:

EF = 4

∫ P

0

η̄
[
(
√

2p)Hρ
F +Hβ

F

]
dp , (61)

where (
√

2p) refers to the length of a square crease in the limit of w → 0. We define the
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neutral angles of ρ and β as the folded angles at state k = k0, i.e.

ρ0 = cos−1

(
2√

8k2
0p

2 + 1
− 1

)
, (62)

β0 = π − 2 sin−1

 √
2√

1 +
√

8k2
0p

2 + 1

 , (63)

The elastic energy stored in the bending hinges is computed as:

EB = 4

∫ P

0

η̄(
√

2p)Hθ
Bdp , (64)

where (
√

2p) refers to the length of a bending crease in the limit of w → 0.

Considering Eqs. (49) to (51), we note that the above expressions reveal the bistability of

the folded hypar system. Since the term k always appears in its quadratic form (i.e. k2), we

conclude that a symmetry of system energy (with respect to k) exists for k < 0 and k > 0.

In other words, for any folded state, there are different folded states of identical system

energy, whose shape are defined by k of opposite sign but same magnitude. As a result, if

we can show that there exist a local minimum of system energy of the hypar pattern for

k > 0, the system is guaranteed to exhibit bistability.

Due to symmetry of system energy with respect to k, we only need to consider folded

shapes with k > 0. We show below that there exist a local minimum of system stored energy

for 0 < k < k0, which is true if we can find a k∗ between 0 and k0 such that:

∂ET

∂k

∣∣∣∣
k=k∗

= 0, and
∂2ET

∂k2

∣∣∣∣
k=k∗

> 0. (65)

Differentiating Eq. (61), we obtain:

∂EF

∂k
= 4

∫ P

0

η̄

[
(
√

2p)
∂Hρ

F

∂ρ

∂ρ

∂k
+
Hβ

F

∂β

∂β

∂k

]
dp , (66)

where,

∂ρ

∂k
=

8kp2

(8k2p2 + 1)
√√

8k2p2 + 1− 1
, (67)

∂β

∂k
=

√
2

k

√√
8k2p2 + 1− 1

8k2p2 + 1
. (68)

When k = k0, we have ρ = ρ0 and β = β0, therefore, (∂Hρ
F/∂ρ) = 0, and (∂Hβ

F/∂β) = 0,

which leads to (∂EF/∂k) = 0. When k = 0, we have ρ < ρ0 and β < β0, indicating that
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(∂Hρ
F/∂ρ) < 0 and (∂Hβ

F/∂β) < 0. Because η̄ is a positive function, we only need to examine

the sign of (∂ρ/∂k) and (∂β/∂k) to determine the sign of (∂EF/∂k). Since both Eqs. (67)

and (68) are positive for k > 0, we know that (∂EF/∂k) < 0 for 0 < k < k0. When k → 0+,

we obtain:

lim
k→0+

∂ρ

∂k
= 4p, (69)

lim
k→0+

∂β

∂k
= 2
√

2p. (70)

Hence, (∂EF/∂k) < 0 when k → 0+. On the other hand, differentiating Eq. (64) and taking

θ0 = 0, we obtain:
∂EB

∂k
= 4

∫ P

0

η̄(
√

2p)
∂Hθ

B

∂θ

∂θ

∂k
dp , (71)

where,
∂θ

∂k
=

2
√

2p

8k2p2 + 1
. (72)

We can see that (∂EB/∂k) = 0 when k = 0, and (∂EB/∂k) > 0 when k > 0. In conclusion,

when k → 0+, (∂EF/∂k) < (∂EB/∂k) = 0; when k = k0, (∂EB/∂k) > (∂EF/∂k) = 0.

Hence, we know that:

∂ET

∂k

∣∣∣∣
k→0+

=
∂EF

∂k

∣∣∣∣
k→0+

< 0, (73)

∂ET

∂k

∣∣∣∣
k=k0

=
∂EB

∂k

∣∣∣∣
k=k0

> 0. (74)

Because (∂ET/∂k) is a continuous function, there must exist 0 < k∗ < k0, such that:

∂ET

∂k

∣∣∣∣
k=k∗

= 0. (75)

Furthermore, we let k∗ be the smallest root of Eq. (75), i.e. the first intersection with 0. As

(∂EB/∂k) < 0 when k < k∗, and (∂EB/∂k) > 0 when k > k∗, we know that the derivative

of (∂EB/∂k) must be positive at the point k = k∗. Therefore,

∂2ET

∂k2

∣∣∣∣
k=k∗

> 0, (76)

which indicates that at ET has a local minimum at k = k∗.

The theory is based on the assumption that there exist convex stored energy functions

for folding and bending hinges with different neutral states, i.e. the neutral angles of folding

hinges correspond to a folded state, while the neutral angles of bending hinges correspond
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to the flat (unfolded) state. We have proven that the bistability of the hypar pattern exists

unconditionally, i.e. regardless of the specific constitutive models (i.e. Hρ
F, Hβ

F, and Hθ
B),

and crease offsets (i.e. η). In particular, the bistable behaviour of the hypar pattern is

preserved, including the three cases shown in Fig. 1 and 4 of the main text, i.e. uniform,

random, and functionally graded patterns.

Supplementary Note 4: Bar-and-hinge model for nonlinear numerical analysis

Here, we briefly describe the bar-and-hinge method that we used for the numerical model-

ing of hypar origami. The bar-and-hinge method is a tool for analyzing mechanical behavior

of origami assemblages. Although it simplifies the kinematics of origami, the mechanics

formulation is developed so that the simplified model can capture the essence of the origami

behavior with non-rigid deformations [6–8]. The implementation in this paper is based on

a nonlinear analysis formulation [8] coupled with the so-called N5B8 discretization scheme

[7], which is explained below.

The basic idea of the N5B8 discretization is presented in Fig. 6. Each quadrilateral

panel is divided into four triangles delimited by the diagonals, hence there are 5 nodes and

8 bars within each panel. Triangular panels are not further discretized. In a bar-and-hinge

model, the one-dimensional stiffness of bars represents the in-plane stiffness of panels (e.g.

stretching, shear). Out-of-plane stiffness (i.e. bending and folding) is simulated by rotational

springs constraining each dihedral angle between two adjacent triangular frames. The N5B8

scheme allows the discrete system to capture doubly curved out-of-plane deformations and

isotropic in-plane behavior of panels, yielding a much refined resolution [7] than the com-

monly adopted triangulation scheme [9–11] that simply divide each quadrilateral panel into

two triangles.

We consider the discretized origami assemblage as an elastic system. The total strain

energy (ET) has contributions from the bars (ES), bending hinges (EB) and folding hinges

(EF). The total potential energy of the system is then:

ET(u) = ES(u) + EB(u) + EF(u)− fTu, (77)

where f is the externally applied load, and all the other energy terms are nonlinear functions

of the nodal displacements u. Equilibrium is obtained when ET is locally stationary, and
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Supplementary Figure 6. Schematics of the N5B8 bar-and-hinge model for origami analysis. In-

terior edges (in gray) of panels are assigned with rotational springs representing bending defor-

mations. Boundary edges (in black) shared with other panels are assigned with rotational springs

representing folding deformations.

therefore the equilibrium equation and the finite element matrices can be derived as [7, 8]:

T(u) = TS(u) + TB(u) + TF(u)− f = 0, (78)

K(u) = KS(u) + KB(u) + KF(u), (79)

where:

TS(u) =
∂ES(u)

∂u
, TB(u) =

∂EB(u)

∂u
, TF(u) =

∂EF(u)

∂u
, (80)

and

KS(u) =
∂2ES(u)

∂u2
, KB(u) =

∂2EB(u)

∂u2
, KF(u) =

∂2EF(u)

∂u2
. (81)

The energy contribution for each deformation mode is the summation of elemental contri-

butions, which is defined through elastic constitutive models.

For bar elements, we define the stored energy for a single bar as:

ES = ALW(ε11) (82)

where A denotes member area, L denotes member length, and W is the energy density as

a function of the one-dimensional Green-Lagrange strain ε11. We adopt a one-dimensional

Ogden model [12] for W such that

W(ε11) =
Y

α1 − α2

(
λ1(ε11)α1 − 1

α1

+
λ1(ε11)α2 − 1

α2

)
, (83)

where Y is the modulus of elasticity, α1 and α2 are material constants taken as 5 and 1 [8],

respectively. The principle stretch λ1 is a function of ε11, which is given by λ1 =
√

2ε11 + 1
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[13]. Accordingly, the 2nd Piola-Kirchhoff stress (the energy conjugate stress) is obtained

as

S11 =
∂W
∂ε11

=
∂W
∂λ1

dλ1

dε11

=
Y

α1 − α2

(
λα1−2

1 + λα2−2
1

)
. (84)

For small strains, the constitutive model approximates linear elastic behavior, which occurs

in our simulations as the strains of bar elements are very small (< 1%). Denoting ν as the

material’s Poisson’s ratio, to recover the in-plane Poisson’s effect of the panel, we define the

member areas as [7]:

AX = h
H

2 − νW 2

2H(1− ν2)
, AY = h

W
2 − νH2

2W (1− ν2)
, AD = h

ν(H
2

+W
2
)3/2

2HW (1− ν2)
, (85)

where W = (W1 + W2)/2, H = (H1 + H2)/2, and the subscripts X, Y , D label different

bars, as indicated in Fig. 6(b).

The stored energy of each bending hinge is assumed to be a function of the hinge length

(L) and bending angle (θ), which is given by

Hθ
B =

1

2
LKB(θ − θ0)2, (86)

where KB denotes the bending stiffness constant. We assume KB as [7, 14]:

KB = (1.0)
Y h3

12(1− ν2)LD

(
LD
h

)1/3

, (87)

where LD is the total length of the diagonal on which the bending hinge lies. The scalar

(LD/h)1/3 accounts for the scaling effect of ridge singularity [7, 15]. The resistance moment

(or torque) of the hinge is then given by

τ θB =
∂Hθ

B

∂θ
= LKB(θ − θ0). (88)

We define the bending angle θ ∈ [−π, π), using absolute angles, such that θ = 0 when the

panel is flat. A bending hinge is stress-free when τb = 0, that is, when θ = θ0. In our

implementation, the bending hinges are always assigned with θ0 = 0.

The stored energy of the folding hinges and their corresponding resistance moments are

given by

Hρ
F =

1

2
LKF(ρ− ρ0)2, τ ρF = LKF(ρ− ρ0), (89)

Hβ
F =

1

2
LKF(β − β0)2, τβF = LKF(β − β0), (90)
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Supplementary Figure 7. Folding a numerical model of hypar origami. (a) The applied forces and

kinematic constraints (red roller supports). Total upward and downward forces are balanced. The

numbers are the relative magnitudes of forces normalized by a reference force F0. (b)-(d) Frames

along the folding process. The folding stops when distance D (as shown in green) becomes 80% of

its original length when the sheet is flat (unfolded). (e) The new equilibrium shape after release of

the folding forces and update of the neutral angles of folding hinges. The shape drawn in gray is

the same as in (d), which shows the unbalanced configuration of the origami structure before the

new equilibrium is found.

whereKF is the folding rotational stiffness, and ρ and β denote the folding angles. We assume

KF = KB/2, where KB denotes the average bending stiffness. The stiffness reduction factor

is taken as 2 based on the fact that we perforate the crease lines with equal distant slots that

sum to half of the total crease length.

To numerically fold a hypar pattern, we apply forces at the vertices to fold up the initially

flat pattern, as shown in Fig. 7(a). A small symmetry-breaking perturbation is applied at

the beginning of the loading to trigger one particular folding branch. In addition, because a

flat pleated sheet has many singular deformation modes, it is easy to fold the pattern into

undesired shapes. Thus, to improve the folding effectiveness, we reduce KF further in this
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step to distinguish the desired folding mode from other deformation modes. Please watch

Supplementary Movie 3 for the folding simulation.

After the origami is folded to a hypar, we release the folding forces. To accommodate the

inelastic deformation of folding creases within the nonlinear elastic framework, we update

ρ0 and β0 after we release the folding forces so that the neutral angles of folding hinges are

reset to the current folded state, as shown in Fig. 7(d). Meanwhile, the bending hinges

still have their stress-free states at a flat configuration. As the other elements in the system

remain elastic, after we release the folding forces, the system is unbalanced, and a new

equilibrium must be found. This new equilibrium configuration then results from minimizing

the combined energy (E) of folding (EF), bending (EB) and stretching (ES) of the updated

system. The configurational change before and after finding the new equilibrium is depicted

in Fig. 7(e).

In Fig. 8, the color of the fold lines and the bend lines indicates the value of deformation

angles, mapped onto the flat pattern of the hypar origami. Three different scenarios are

considered: (1) the configurations at the end of enforced folding; (2) the equilibrium con-

figurations of the updated models; (3) and the configurations after the snapping is finished,

corresponding to frame 4 in Fig. 6(b) of the main text. We can clearly see that the dominant

bending angles are forming the alternating asymmetric triangulation pattern in all cases.

Supplementary Note 5: Movie captions

Supplementary Movie 1 Snapping of hypar origami (physical model)

A Mylar based hypar origami display fast snapping between two stable and symmetric

saddle configurations.

Supplementary Movie 2 Snapping of hypar origami (numerical simulation)

Numerical simulation using the bar-and-hinge reduced order model reveals the change of

mechanical states during the bistable snapping of the hypar origami.

Supplementary Movie 3 Folding of hypar origami (numerical simulation)

Numerical model simulates the folding of the hypar origami from a flat sheet.
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Supplementary Figure 8. Out-of-plane deformations (folding and bending) in terms of deformation

angles (in absolute values). The average of kblue and kred interpolated by the blue and red dots are

used as an estimation to the quadratic coefficient k in Eq. (13) of the main text.

21



Nomenclature

× Cross product

· Dot product

Ai Coordinate of point (vertex) A in the i-direction

d Panel width

L Corrugation length (=length of the middle folding ridge)

w Dimensionless panel width (:= d/L)

θ1, θ2 Bending angles

ρ, β Folding angles

φ Angles between two consecutive diagonal creases

eAB Vector pointing from point A to B

~n Normals in the local geometry of a corrugation

X The surface approximated by a hypar origami

Xr,Xt Tangents of the global surface

n Normals on the global surface

ξ, ζ Three-dimensional space curves

ξ, ζ One-dimensional curves

k, k0 Quadratic coefficient of hyperbolic paraboloid geometry

ET Total stored energy of a hypar origami structure

ES Stretching energy

EB Bending energy

EF Folding energy

T Internal force vectors

K Stiffness matrices

f Applied forces on a bar-and-hinge model of an origami structure

u Nodal displacements of a bar-and-hinge model

W Strain energy density (of bar elements)

ε11 One dimensional component of the Green-Lagrange strain (of bar elements)

H Stored energy (of rotational spring elements)

Y Modulus of elasticity (initial)

ν Poisson’s ratio
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h Panel thickness

KB Bending stiffness constant

KF Folding stiffness constant
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