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Materials and Methods 
 
Material characterization: A dynamic mechanical analysis (DMA) machine (Model Q800, TA 

Instruments Inc, New Castle, DE, USA) was used to characterize the mechanical and 

thermomechanical properties of the materials. The viscoelastic properties of the printed SMPs 

were measured in the film tension mode. The material samples (dimension 10mm×3mm×1mm) 

were first heated to 90°C on the DMA machine and stabilized for 10 minutes to reach thermal 

equilibrium. A preload of 0.001N was applied to straighten the samples. During the DMA tests, 

the strain of the samples was controlled to oscillate at a frequency of 1 Hz with a peak strain 

amplitude of 0.1%. Meanwhile, the temperature decreased from 90°C to 0°C with a rate of 

2°C/min. The glass transition temperature Tg is identified by the temperature when the 

viscoelastic loss tangent (tanδ) reaches its peak value. The Tg’s of the three strut materials are 

60°C (BM: Verowhite plus), 37°C (DM-1: DM9895), and 57°C (DM-2: DM8530).  



2 
 

The stress-strain behavior of the cable material was tested in controlled force mode on the DMA 

machine at room temperature (~25°C). A complete load cycle was performed at a very low speed 

(quasi-static) on a sample with dimensions 10mm×0.9mm×0.25mm. The printed sample was 

stretched to 3.1 MPa at loading rate of 0.5 MPa/min and then unloaded. The initial tangent 

elastic modulus was determined to be 16.43MPa from the stress strain curves (see Figure S5). 

Supporting Text 

 
S1. Analysis of self-stressed tensegrity structures 

Based on the design, linear analysis of self-stressed tensegrity helps us to correlate the 

initial tangent stiffness of the tensegrity structure to its self-stress level. Considering the small 

strain due to self-stress, we treat the strut material as linear elastic and take the initial modulus 

for the calculation to simplify the design process. The governing equation takes the form of a 

linear equation =Ku F , where K  is the stiffness matrix, u contains the nodal displacements, and 

F  contains the applied forces. Due to the self-stress, the stiffness matrix for a tensegrity structure 

is different from a normal truss structure1,2. The major difference is the additional contribution of 

the geometrical stiffness matrix GK . Thus the tangent stiffness matrix takes the form: 

 E G= +K K K , (S1) 
where, EK  is the linear stiffness matrix. For completeness, we summarize the derivation of GK  

here. Assume that for a member (either a cable or strut) i , its two nodes, length and self-stress 

induced force are a , b , iL  and iT , respectively. We define the components of a connectivity 

matrix C  as:   

 

1,     if member  is connected to node , and 
1,  if member  is connected to node , and 

0,    otherwise
ij

i j j a
C i j j b

=ì
ï= - =í
ï
î

. (S2) 
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We also define a diagonal matrix Q  such that: 

 ii i iQ T L= . (S3) 

The ratio i iT L  is known as the force density2. Let T  be the normalized self-stress induced force 

vector with maximum compression in struts equal to 1. Denoting γ as a scaling factor (which 

equals to the maximum compressive force in struts), we can rewrite Q  as: 

 g=Q Q, (S4) 

where ii i iQ T L= . Because T  is an intrinsic property of a tensegrity design, it is a constant vector. 

Thus, we can write the so-called force density matrix 2 as: 

 T Tg= =E C QC C QC. (S5) 

Since the strains of the members caused by the self-stress are small, the geometric stiffness 

matrix can be expressed as: 

 3 3G Gg´= Ä =K E I K . (S6) 

Finally, with the contribution of the linear stiffness matrix, the stiffness matrix of the 

tensegrity structure can be approximated for small deformation as: 

 ( ) E Gg g= +K K K . (S7) 

From the above derivation, we can see that the stiffness matrix of a tensegrity is a function of its 

self-stress level γ. We find that the higher the self-stress, the stiffer the tensegrity. Using this 

equation, we can find the relationship between the initial tangent modulus of a tensegrity under 

global uniaxial compression and the self-stress level γ. The initial tangent modulus is the ratio of 

the applied force over the compression magnitude (in terms of displacement). Figure S1 plots the 

curve of initial tangent modulus versus self-stress level, based on the material properties for 3 

tensegrity designs. The tangent modulus shown here is calculated using the non-dimensional 
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displacements, which is the downward compression displacements normalized by the heights of 

the tensegrity designs, and thus, the unit of the tangent modulus is in Newton (N). The two 3-

layer tensegrities (with different materials) yield almost identical curves, so only one is plotted 

for clarity. This curve does not start from (0,0) because the 3-layer tensegrity is kinematically 

determinate, thus its stiffness matrix is not singular when there is no prestress ( (0) E=K K ). 

According to the experimental compression tests of the active tensegrities, we can approximate 

the initial tangent modulus of a tensegrity. Then, based on the curves shown in Figure S1, we can 

inversely estimate how much self-stress we have successfully applied to the active tensegrity. 

 
S2. The two critical loads for the slitted tubular struts 

From the previous section, we can see that the (initial) stiffness of a tensegrity structure 

depends on the self-stress level. However, the achievable self-stress level of an active tensegrity 

is not arbitrary, as it is determined by two critical factors. The first factor is that the compression 

on struts should not prevent their full recovery. In the final stage of deployment, some SMP 

struts in the active tensegrity will be subject to compression before full recovery, with their 

tubular cross-section still open. The second critical factor is that, after deployment, the struts 

should not buckle under the self-stress compression. If the struts buckle, then the tensegrity will 

lose some self-stress and cannot completely reach the designated shape. In the following, we will 

derive analytical estimations of these two critical strut loads. We first compute the critical force 

during the recovery, when the tubular cross section of a strut is open, as shown in Figure S2a. 

We make the following assumptions: (1) a tube can be analyzed using shell theory because the 

thickness is relatively small; (2) the mid-surface is subject to isometric deformation; (3) the 

static behavior of the SMP can be regarded as elastic when the temperature is fixed and the 

strain is relatively small. The meaning of the symbols used in the derivation is illustrated in 
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Figure S2. Therefore, supposing that the changes in the curvatures along the two principle 

directions are ( 1 r- , 1 R ), we can write the total strain energy at the bending region as3: 

 2

1 2
2B

D R rU
r RR

a y næ ö= + -ç ÷
è ø

. (S8) 

The symbol D  denotes the flexural rigidity, defined as: 

 ( )
3

12 1
EtD

n
=

-
, (S9) 

where E is Young’s modulus and ν is Poisson’s ratio. The value of r is determined when UB is 

minimized3. Therefore, r=R. Then the bending moment is calculated as: 

 ( )1BUM Da n
y

¶
= = -
¶

. (S10) 

At the final stage of the strut’s recovery, a single kink about a quarter from the end of a strut is 

usually observed (see Movie S3). Thus, we can draw the shape schematically as shown in Figure 

S2c. The regions that are not opened are much stiffer than the bending region. Therefore, we 

may treat those regions as rigid. Notice that, 

 1 2sin (1 ) sinL Ll q l q= - . (S11) 

If the two applied forces are aligned along the same line, then equilibrium is obtained as: 

 ( )1 1sin coscrM F L Rl q q= + . (S11) 

Thus the critical force can be calculated by: 

 
3

1 1 1sin cos 12( )cr
M EtF

L R L R
a

l q q l q
= ³

+ +
, ( 10 2q p< < ). (S11) 

In our case, the typical value for l  is around 0.25. The angle 1q  can be computed from the 

deformed length of the strut ( 1 2cos (1 ) cosL Ll q l q+ - ). The equality holds when 1q  is small. The 

later expression is used because it is simple and conservative. The derivation requires a portion 

with fully opened cross section along the strut (which forms a “kink”), thus it is not accurate 
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when the strut is almost straight (i.e. 1q  becomes very small), because in reality the opened cross 

section starts to enclose before the strut recovers to straight, so the deformation mode no longer 

has a “kink”. 

The critical load before the buckling of the struts after deployment is given by the Euler 

buckling formula4,  

 
2

2
min

buckling
eff

EI
F

L
p

= . (S12) 

The effective length Leff depends on the boundary conditions of the strut. In the compression 

tests, the fixture of the sample constrains the free rotation at the two ends, resulting in an 

effective length around 0.75L. However, in the tensegrity, the two ends are assumed to be 

pinned, and thus Leff = L. The minimum static moment of inertia Imin is determined to be the 

static moment of inertia of the X-X axis at the geometric centroid GC, which is denoted as IGC-XX,  

 ( ) ( )
( )

2
3

2

sin 2 sin
2 22

GC XXI R t
aa aa p

a
-

é ù
= + - +ê ú

ê úë û
. (S13) 

We note that, in the experiment, the struts are not loaded at the geometric center (GC) of the 

cross section. Instead, the compressive forces are loaded at point O (at the center of the mid-

surface circle). As a consequence, the actual critical buckling force will be lower than the 

estimation, since the buckling mode involves a combination of bending and twisting. 

 
S3. Design of cables 

As explained in our paper, the self-stress in the tensegrity is induced by prescribed length 

differences between cables and struts. We assume that after successful deployment, the struts 

become straight and their deformation under compression is negligible (recall that the struts are 

much stiffer than the cables). Therefore, we control the level of self-stress magnitude by 
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manipulating the initial length of cables. We did this for two reasons. First, we do not want the 

initial length of cables to be too long so that the deployed tensegrity cannot gain enough self-

stress to become stable and stiff. Second, the initial lengths of cables should not be so short that 

the struts cannot recover during deployment or stay straight after deployment, due to the 

excessive self-stress magnitude. 

Suppose that the desired self-stress level is γ and member i is a cable. Given the normalized 

force vector T  (as defined in Section S1), we can determine the initial length of a cable as: 

 0
2

2
( ) ( ) 1

d

i cT AE
d

d
g

-
= +

+
. (S14) 

In this equation, 0  denotes the initial length, d  is the design length of the cables which is 

pulled from the geometry of the tensegrity design, iTg  is the desired tension in the cable, A  is the 

cross-sectional area of the cable, and d  is the ineffective length at each end of a cable which 

changes very little. Considering the contact angles of cables and struts, d  is generally 1.4~3 

times the distance d shown in Figure S3. Typically, the force is small, and we can assume linear 

behavior for the cables. Hence the initial elastic modulus cE  is used. 

Such calculation provides an approximate guide for determining the initial lengths of cables 

based on the value of γ, which needs to be greater than 0, but less than the minimum critical load 

of the strut. In reality, the control of the self-stress level and final geometry will not be precise 

due to many practical factors, for example: the twisting of cables, the plasticity of the cable 

material, the printing accuracy, and the entanglement of the cables near the joints. In some cases, 

adjustment based on the experimental results is needed, especially for tensegrity designs with 

complex geometries. 

 

S4. Detailed experimental analysis 
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The shape recovery behavior of the strut comes from the viscoelastic properties of the 

SMPs. The DMA tests are performed to investigate the viscoelastic properties of the printed strut 

materials. The storage modulus and loss tangent tan δ vs. temperature plots of the printed three 

strut materials are shown in Figure S4.  

The Filaflex material exhibits rubber-like viscoelastic properties at room temperature. 

Uniaxial tension tests are performed to investigate the mechanical properties of the printed 

Filaflex material. The stress vs. strain curve is shown in Figure S5. The specimen occupies the 

same cross section as the cables, which is a rectangle of 250µm-thick and 920µm-wide. The 

uniaxial stretch is up to ~40% of the initial length. 

 

S5. Constitutive model for the SMP 

The multi-branch model is used to describe the viscoelastic properties of the printed SMP 

materials. In this model, one elastic equilibrium branch and several thermo-viscoelastic non-

equilibrium branches are arranged in parallel. The non-equilibrium branch is described by the 

Maxwell element, represented by a viscous damper and an elastic spring connected in series. The 

total stress of the material can be expressed as: 

 ( )0
1 1

= exp
n n t tm m

total Eq non Eq non s
m m m

e dtE e E ds
s T

s s s
t= =

é ù¢¶
= + + -ê ú

¶ ê úë û
å å ò ò , (S15) 

where EqE  is the Young’s modulus of the equilibrium branch and both m
nonE and mt are the 

Young’s modulus and temperature dependent relaxation time of the m-th non-equilibrium 

branch. To consider the temperature effects, the time temperature superposition principle (TTSP) 

is used. The relaxation time mt  at temperature T can be calculated using the relaxation time R
mt  at 

the reference temperature, given by: 
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 ( ) ( )Shift R
m mT a Tt t= , (S16) 

where ashift(T) is the time temperature superposition shifting factor. According to O’Connell and 

McKenna5, the shifting factors can be calculated by combining the Williams-Landel-Ferry 

(WLF) equation 6 and the Arrhenius-type equation 7.  If the temperature is higher than the 

reference temperature, the shifting factor can be expressed using the WLF equation: 

 ( )
( )
( )

1

2

log ,refshift
ref

ref

C T T
a T T T

C T T

-
é ù = - >ë û + -

. (S17) 

The parameters 1C , 2C  and refT  are material parameters to be characterized by experiments. We 

denote A, Fc, and Boltzk  as the material constant, configurational energy, and Boltzmann’s 

constant, respectively. When the temperature is lower than the reference temperature refT , the 

shifting factor is expressed by the Arrhenius-type equation:      

 ( ) 1 1ln ,shift c
refBoltz

ref

AF
a T T T

T Tk
æ ö

é ù = - - <ç ÷ë û ç ÷
è ø

. (S18) 

The parameters including eqE , non
mE , R

mt , 1C , 2C  and Boltz
cAF k  are determined from the DMA 

tests. The storage modulus at high temperature (90˚C for BM, 65˚C for DM-1, 85˚C for DM-2) is 

the equilibrium modulus eqE  for each of the materials. For the multi-branch model, the 

temperature dependent storage modulus ( )sE T , loss modulus ( )lE T  and loss tangent ( )tan Td   can 

be respectively computed by: 

 ( )
( )
( )

22

22
1 1

nonn
m m

s eq
m m

E T
E T E

T

w t

w t=

é ùë û= +
+ é ùë û

å , (S19a) 

 ( ) ( )
( ) 22

11

nonn
m m

l
m m

E T
E T

T

wt

w t=

=
+ é ùë û

å , (S19b) 
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 ( ) ( )
( )

tan l

s

E T
T

E T
d = . (S19c) 

The symbol ω denotes the test frequency.  By employing a nonlinear regression software 8,9, the 

parameters non
mE , R

mt , 1C , 2C  and AFc/k can be determined by fitting the tand  and storage modulus 

from experimental DMA tests. The material parameters used in this paper are provided in Table 

S1. 

To show the capability of this model, the comparison of the DMA curves between the 

experiment and the simulation are shown in Figure S6. We can see that the multi-branch model 

explains the thermomechanical behavior of the printed strut materials in the temperature range 

used for programming and actuation processes. 

 
S6. Finite element analysis 

The recovery process and mechanical properties of struts are modeled using the FEA 

software ABAQUS (Simulia, Providence, RI, USA). The hybrid C3D8RHT element is used. We 

implement the multi-branch model based on Prony’s series, which is defined as: 

 /

1

( ) m

n
t

Eq m
m

G t G G e t-

=

= +å , (S20) 

where G is the total shear modulus, GEq and Gm are the shear modulus of the equilibrium branch 

and m-th non-equilibrium branches. Applying the incompressible condition, the shear modulus G 

is calculated as Gm=Em/3, where Em is the elastic modulus from the multi-branch model. The 

material parameters for the multi branch model are elaborated upon in Section S5. To apply the 

temperature effects, the shift factors are calculated using the WLF equation and Arrhenius-type 

equation6,7. The UTRS subroutine is used to implement the WLF equation and Arrhenius-type 

equation.   
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Considering the symmetry of the strut and boundary conditions, only 1/4 of a strut is used 

for simulation of free recovery. The slit of the strut is first opened into a nearly flat configuration 

in the middle part of the strut at 65°C, which is above the Tg of the BM (Verowhite). The 

pressure used to open the slit is applied on the inner surface of the slit near the opening. After the 

slit is opened, we fix the middle section of the strut (one end in the 1/4 model) and add a pressure 

load on the end of the strut and in the transverse direction of the strut to bend it into a “U”-shape. 

To further deform the strut into the “W”-shape, we fix the 1/4 section of the strut and apply 

pressure at the end in the opposite direction of the previous step. After the deformation process is 

finished, we cool the temperature to 25°C, at which the material is in a glassy state. Then all the 

external loading and constraints are removed, and the deformed shape of the strut is “frozen” due 

to viscoelasticity. To simulate the recovery process, the temperature is increased to 65°C. The 

recovery process by the simulation is compared with the experimental results, as shown in Figure 

2.  

The strut under compression is also modeled to determine the after-recovery critical force 

(Fbuckling). In this simulation, the whole strut is modeled to consider asymmetric deformation 

modes. We impose an ambient temperature of 65°C. One end of the strut is pinned in directions 

x, y, z within the central zone (radius of 1mm), creating a partially fixed end. At the other end, 

the center zone is pinned in x, y directions (partially fixed), and a displacement load of rate 

0.25mm/s is applied in the -z direction. This boundary condition is similar to the case of the strut 

compression experiment, but more restrictive than the actual boundary condition as embedded in 

the tensegrity structures. 

A similar procedure can be applied to predict the mechanical performance of struts made 

with various SMPs. 
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Figure S1. Initial tangent modulus vs. maximum self-stress forces in struts. 

 

 
Figure S2 (A) Schematic of a folded strut with opened cross section. (B) Cross section (A-A) of 
the struts. (C) Sketch of the critical scenario in the recovery of struts (during the deployment of 
an active tensegrity), based on observations from the experiments. 
 

 
Figure S3 Schematic of the cable network design. 
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Figure S4 (A) Storage modulus vs. temperature curves for three SMPs. (B) Loss tangent tan δ 
vs. temperature curve. 
 
 

 
Figure S5 The stress-strain curve of Filaflex material at room temperature (~25°C). 
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Figure S6 Comparison of the DMA curves between experimental data and numerical models for 
three SMP materials used in this paper. 
 
 
 

 
Figure S7 Failed deployment of a 6-strut spherical tensegrity, due to physical contact between 
struts, as highlighted by the red circle. As discussed in the main text, when the cables are loose, 
the folded struts are almost free to move in space. In this example, a strut blocks the recovery of 
another strut. 
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Figure S8 The compression tests on the two-layer tensegrity and the three-layer tensegrity, 
whose struts are made with two SMPs. (A) Compression test of the resultant deployed 2-layer 
tensegrity using 2 different SMPs for struts (BM and DM-1). The red line indicates the loading 
process while the green line indicates the unloading process. Estimated maximal compression 
equals 0.12N. (B) Compression test of the deployed 3-layer tensegrity made with 2 different 
SMPs (BM and DM-1). Maximal compression in the struts is estimated to be around 0.14N. The 
three-layer tensegrity shows two dips in both the loading and unloading process. This is due to 
the inherent multi-stability behavior of such structures. That is, the structure has a multiple local 
minima of stored energy at different configurations. For example, when one layer of the tower is 
fully flattened, the structure is at an alternative stable state (other than the fully deployed 
configuration). Due to the contact of struts, the other stable configurations cannot be reached. 
However, it still leads to a reduction in stiffness of the structure (snap through). The 3-layer 
tensegrity in B illustrates this effect more clearly than the one in Figure 4D of the main content 
because the structure in A has more DM-1 struts, which are less stiff than DM-2 and BM struts 
in room temperature (~25˚C). Thus, when a contact between struts happens, the DM-1 struts will 
bend, leading the structure slightly closer to the ideal alternative stable configuration, although 
this state cannot be fully reached. 
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Table S1. 
Material parameters for the multi branch model. 
   

 Verowhite DM9895 DM8530 
Branch Enon (MPa) τi Enon (MPa) τi Enon (MPa) τi 
E1 148.7076 2.00E-08 300 0.0001 170 1E-07 
E2 119.7517 4.27E-07 275 0.000657 188 9.93E-07 
E3 131.9798 5.47E-06 296 0.003872 212 0.00001 
E4 147.1372 5.89E-05 305 0.02 239 9.08E-05 
E5 282.3444 0.000547 350 0.1 268 0.00074 
E6 320.9668 0.004524 378 0.576863 293 0.005374 
E7 354.2126 0.032439 292 3.401616 308 0.035368 
E8 427.2871 0.2 215 20 291 0.2 
E9 178.2132 1 147 96.82391 285 0.954957 
E10 143.8276 3.250259 95.213467 362.9461 138 3.182197 
E11 151.2221 9.451896 63.12765 1000 162 7.497457 
E12 162.8788 30.23741 62.0921 2671.527 178 25.11365 
E13 162.4149 100 52.099306 7912.87 153 87.11596 
E14 151.456 315.2367 42.374719 23498.79 133 283.7953 
E15 141.8913 927.9366 35.205449 71461.38 122 905.6253 
E16 111.7587 8849.219 27.897552 228551.6 112 3025.975 
E17 140.7818 2849.202 20.760769 726401 98.09554 10000 
E18 81.89721 25294.7 15.532429 2277776 83.26095 32677.22 
E19 52.68197 72900 11.281878 7091525 65.70456 96510.16 
E20 12.47854 653520.3 8.305791 21997171 59.12021 267333.4 
E21 28.03173 213000 5.959708 68236585 51.92218 773277.7 
E22 1.712558 5370000 4.351312 2.08E+08 44.76933 2339554 
E23 4.830405 2000000 3.329757 6.41E+08 34.59949 7613180 
E24 1.197657 85400000 2.644468 2.07E+09 21.72712 26070126 
E25 1.383214 20000000 2.196711 7.07E+09 9.995279 1E+08 
E26 0.000183 3.61E+08 1.578065 2.4E+10 2.916758 5.22E+08 
E27 2.537188 2E+09 0.1070122 1E+11 0.957138 5.77E+09 
Eeq (MPa) 10.4 3.30 7.5 
Tg (˚C) 60 38 57 
Tref (˚C) 22 -3 17 
C1 17.44 17.44 17.44 
C2 66.35 42.1 50.5 
AFc/k -23000 -23000 -24000 
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Movie S1 Deployment of a 3-strut tensegrity. 

Movie S2 Numerical simulation of the free recovery of a single strut with the slitted tubular 
cross section. 

Movie S3 Deployment of a 6-strut spherical tensegrity, using the partial folding strategy. 

Movie S4 Deployment of a 6-strut spherical tensegrity with 3 discrete attaching pieces of 
surface. 

Movie S5 Deployment of a 6-strut spherical tensegrity with one continuous attaching piece of 
surface. 

Movie S6 Programmed sequential deployment of a 2-layer tower tensegrity, whose struts are 
made with 2 SMPs. 

Movie S7 Programmed sequential deployment of a 3-layer tower tensegrity, whose struts are 
made with 2 SMPs. 

Movie S8 Programmed sequential deployment of a 3-layer tower tensegrity, whose struts are 
made with 3 SMPs. 
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