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Supplementary Note 1: Geometry of corrugations

There are two options to triangulate the hypar pattern [1]: one is shown in Fig.1(a), known

as the alternating asymmetric triangulation, and the other is shown in Fig.1(b), known as

the asymmetric triangulation. Although we find that both triangulation schemes yield the

same results, we report the derivation based on the alternating asymmetric triangulation

because it is kinematically preferred for large folding [1], and it relates closely to the natural

bending of hypar panels as we show in our research. In this section we address the geometry

of corrugations. We first parametrize a single corrugation by one folding angle ρ ∈ [0, π] and

two bending angles θ1, θ2 ∈ [0, π], considering panel width d and middle ridge length L. For

the coupled panels ABCDEF shown in Fig. 1(c), its middle ridge is a folding crease labeled

as BE, whose length equals L. For convenience of derivation, we set our coordinate system

so that the panel BCFE is on the xy plane and point E coincides the origin. Without loss of

generality, we scale the dimension of the structure by L, and then the panel width becomes

the relevant dimensionless quantity w := d/L. For folded corrugation before twisting, the

coordinates of points after scaling are given as:

Ax = 1− w, Ay = w cos ρ, Az = w sin ρ

Bx = 1, By = 0, Bz = 0

Cx = 1 + w, Cy = −w, Cz = 0

Dx = w, Dy = w cos ρ, Dz = w sin ρ

Ex = 0, Ey = 0, Ez = 0

Fx = −w, Fy = −w, Fz = 0 (1)

For isometric folding of the triangulated model (using alternating asymmetric triangula-

tion), twisting of a corrugation is achieved by bending about diagonals of the two panels.

For example, the bending of panel ABED is realized by rotating triangle 4ADE about the

diagonal EA with angle θ1, as illustrated in Fig. 1(d). Using Rodrigues’ rotation formula

[2], we obtain the vector eED after rotation by

eED’ = cos θ1eED + sin θ1(
eEA

‖eEA‖
× eED) + (1− cos θ1)(

eEA

‖eEA‖
· eED)

eEA

‖eEA‖
. (2)

Because E’ remains the same as E (located at the origin), then we can write the new
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Supplementary Figure 1. Geometry of corrugations for the hypar pattern – dashed lines indicate

extra pleats introduced by triangulation. (a) Alternating asymmetric triangulation. (b) Asymmet-

ric triangulation. (c) A folded corrugation before twisting. (d) A folded corrugation after twisting.

(e) Twisted configuration of an augmented system considering two adjacent corrugations, where

panel BCF’E’ is shared.

coordinates of point D as:

D’x =
w((2w − 1)w cos θ1 − w + 1)

2(w − 1)w + 1

D’y =
w
(

(2w − 1)
√

2(w − 1)w + 1 sin θ1 sin ρ+ cos ρ((w − 1)(2w − 1) cos θ1 + w)
)

2(w − 1)w + 1

D’z =
w
(

(1− 2w)
√

2(w − 1)w + 1 sin θ1 cos ρ+ sin ρ((w − 1)(2w − 1) cos θ1 + w)
)

2(w − 1)w + 1
(3)

Similarly, we derive the new coordinates of point F as:

F’x =− w((2w + 1)w cos θ2 + w + 1)

2w2 + 2w + 1

F’y =− w ((2w2 + 3w + 1) cos θ2 − w)

2w2 + 2w + 1

F’z =− w(2w + 1) sin θ2√
2w2 + 2w + 1

(4)
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The other points remain unchanged – see Fig. 1(d).

To account for the two reflection symmetries of the entire folded shell, and considering

the orthogonality of the two symmetry planes, the normals of the faces 4ABC and 4D’E’F’

must be orthogonal, as illustrated by Fig. 1(d). Accordingly, the normals of the faces4ABC

and 4D’E’F’ are given by:

~nABC = (eBA × eBC)/(2w2) (5)

~nD’E’F’ = (eE’D’ × eE’F’)/(2w
2) (6)

respectively. In the limit w → 0, we obtain

lim
w→0

~nD’E’F’ = [sin(θ1 − θ2 + ρ), sin θ2 − sin(θ1 + ρ), cos(θ1 + ρ)− cos θ2] /2, (7)

lim
w→0

~nABC = ~nABC = [sin ρ, sin ρ, 1− cos ρ] /2. (8)

Thus the orthogonality condition yields:

lim
w→0

(~nABC · ~nD’E’F’) = 0 =⇒ (9)

(cos ρ− 1)(cos θ2 − cos(θ1 + ρ)) + sin ρ(sin θ2 − sin(θ1 + ρ)) + sin ρ sin(θ1 − θ2 + ρ) = 0.

The above constraint enforces compatibility around the circumferential direction.

Now let’s consider compatibility in the radial direction. We augment the structure by

considering the next corrugation that shares the panel BCFE with the one we just analyzed

– see Fig. 1(e). Notice the interesting fact that the mountain-valley assignment is opposite

for crease lines BE and CF. After the twist, to ensure that the two corrugations comply

with the global symmetries, the normals of 4E’F’G’ and 4BCH’ must be parallel with the

normals of face 4D’E’F’ and 4ABC, respectively. Realizing that eE’B (= eEB) is parallel

to eF’C in the limit, the following constraints must be satisfied:

lim
w→0

(~nD’E’F’ · eEB) = lim
w→0

(~nE’F’G’ · eF’C) , (10)

lim
w→0

(~nABC · eEB) = lim
w→0

(~nBCH’ · eF’C) , (11)

where

~nBCH’ = (eCH’ × eCB)/(2w2),

~nE’F’G’ = (eF’G’ × eF’E’)/(2w
2). (12)
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Again, in the limit of w → 0, the two corrugations essentially yield the same angular

relationships, and the small variation in folding angle δρ vanishes along with w – see Fig.

1(e). Therefore, one infers that the twisted corrugation BCH’E’F’G’ is simply ABCD’E’F’

flipped. As a result, we obtain the following identities:

lim
w→0

(~nBCH’ · eF’C) = lim
w→0

(~nD’E’F’ · eEB) , (13)

lim
w→0

(~nE’F’G’ · eF’C) = lim
w→0

(~nABC · eEB) . (14)

Thus,

lim
w→0

(~nABC · eEB) = lim
w→0

(~nD’E’F’ · eEB) , (15)

which leads to,

sin ρ = sin(θ1 − θ2 + ρ). (16)

Considering the definition ranges of the angles and observations of physical models, we

should reduce the above identity to the simple fact that in the limit (w → 0):

θ1 = θ2, (17)

which leads to ∠ABC = ∠D’E’F’, and hence 4ABC ∼= 4D’E’F’. Substituting Eq. (17) to

Eq. (9), we obtain

(1− 2 cos θ1 + cos ρ) sin2(ρ/2) = 0. (18)

For ρ > 0, the above expression reduces to:

cos θ1 = cos2(ρ/2). (19)

Next, we derive the amount of twisting of a corrugation in terms of ρ, θ1 and θ2. The

axis of twisting is labeled as eMN in Fig. 2 of the main text, where M can be regarded as

the middle point of AC, and N can be regarded as the middle point of D’F’. Although eMN

should be defined after twisting the corrugation, we can see that in the limit, w → 0, eMN

is parallel to eE’B (= eEB). The twisting angle γ about axis eMN satisfies

eD’F’

‖eD’F’‖
= cos γ

eDF

‖eDF‖
+sin γ

(
eEB

‖eEB‖
× eDF

‖eDF‖

)
+(1−cos γ)

(
eEB

‖eEB‖
· eDF

‖eDF‖

)
eEB

‖eEB‖
. (20)

As shown in Fig. 2, we define the opening angles ψ and ψ′ before and after twisting,

respectively, such that

cosψ =
eDF

‖eDF‖
· eAC

‖eAC‖
, and cosψ′ =

eD’F’

‖eD’F’‖
· eAC

‖eAC‖
. (21)
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Taking into account that θ1 = θ2, we observe that

cosψ = 1− 4

cos ρ+ 3
, and lim

w→0
cosψ′ = cos θ1 −

2(1 + cos θ1)

cos ρ+ 3
. (22)

Now we multiply both sides of Eq. (20) by (eAC/‖eAC‖). By doing so, we derive the following

relationship:

cosψ′ = cos γ cosψ − (1− cos γ)

(
2

cos ρ+ 3

)
. (23)

Substituting Eq. (22) into (23), we obtain the following identity in the asymptotic limit:

Supplementary Figure 2. Illustration of the ψ and ψ′ angles. (a) A corrugation before twisting.

(b) A corrugation after twisting. (c) Geometric relationship between ψ, ψ′, and γ.

cos γ = cos θ1, (24)

which directly leads to γ = θ1 = θ2. We use this result to simplify the expressions of ρ and

ψ′, and we get

lim
w→0

cos γ = cos2(ρ/2), and lim
w→0

cosψ′ = cos γ − 1, (25)

as presented in the main text. Notice that Eq. (25) are only necessary conditions to the

compatibility constraints.

Supplementary Note 2: Establishment of the ODE

Setting a coordinate frame as shown in Fig. 2(a) of the main text, the piece of surface

that conforms the geometry of the hypar folded shell in a quadrant can be parametrized as:

X(r, t) = (1− t)[0, r, ζ(r)] + t[r, 0, ξ(r)], (26)
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considering that

ξ(r) = [r, 0, ξ(r)], and ζ(r) = [0, r, ζ(r)]. (27)

Based on observations of the physical model, we assume that the hypar origami surface is a

graph, which has a unique projection onto the xy-plane. This parametrization of the global

surface indicates that the projection of each loop of square crease onto the xy-plane remains

a square but of a smaller size after folding, which is an assumption based on observation. In

the geometric analysis, we find that 4ABC ∼= 4D’E’F’ in the limit of w → 0, which implies

that ζ(r) and ξ(r) have the same constituents at the outer rims, as demonstrated in Fig.

1(e). Thus we may assume that ζ(r) = −ξ(r), which leads to a simplified parametrization

of the surface in the first quadrant as:

X(r, t) = [tr, (1− t)r, (2t− 1)ξ(r)] , r ≥ 0, 0 ≤ t ≤ 1. (28)

Indeed, we have reduced the problem of finding the shape of the meta-surface to establishing

an ODE for the one dimensional function ξ(r). To establish the ODE, we will use the previous

geometric relationships derived locally for each corrugation. Due to the coordinate system

we choose, the initial condition is ξ(0) = 0. We may also assume that ξ is a monotonically

increasing convex function or monotonically decreasing concave function based on inspection

of the actual shape of a folded hypar origami.

From a global view, we can define four tangent vectors at points M and N on the surface

as follows:

XM
r =

∂X

∂r
(r, 0) = [0, 1, −ξ′(r)] (29)

XM
t =

∂X

∂t
(r, 0) = [r, −r, 2ξ(r)] (30)

XN
r =

∂X

∂r
(r, 1) = [1, 0, ξ′(r)] (31)

XN
t =

∂X

∂t
(r, 1) = [r, −r, 2ξ(r)] (32)

We remark that XM
t = XN

t , and they both align with the direction of eMN. Computing the

two surface normal vectors at M and N, we obtain:

nM =
XM
r ×XM

t

‖XM
r ×XM

t ‖
=

[2ξ(r)− rξ′(r), −rξ′(r), −r]√
r2 + r2ξ′(r)2 + (2ξ(r)− rξ′(r))2

, (33)

nN =
XN
r ×XN

t

‖XN
r ×XN

t ‖
=

[rξ′(r), −2ξ(r) + rξ′(r), −r]√
r2 + r2ξ′(r)2 + (2ξ(r)− rξ′(r))2

. (34)
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The normals on two bounding curves may not be consistent for the two adjacent pieces of

surface because there is no guarantee of first-order continuity at the joints. Therefore, we

cannot assume that the x component of nM and the y component of nN are zeros. The

discrete vectors eAC and eD’F’ are approximations of XM
r and XN

r , respectively. In addition,

the twisting angle γ from the local analysis relates to the change between surface normals

nM and nN. Because both normals are orthogonal to eMN, we write

cos γ = nM · nN. (35)

Furthermore, using Eq. (25) and (21), we obtain

cos γ =
eAC · eD’F’

‖eAC‖‖eD’F’‖
+ 1 =

XM
r ·XN

r

‖XM
r ‖‖XN

r ‖
+ 1. (36)

Equating the above two expressions, we obtain a first order ordinary differential equation

(ODE):
(2ξ(r)− rξ′(r)) (2ξ(r)− 3rξ′(r)− 2rξ′(r)3)

(ξ′(r)2 + 1)
(
r2 (ξ′(r)2 + 1) + (2ξ(r)− rξ′(r))2) = 0. (37)

The denominator is always positive because ξ(r) and ξ′(r) are both real and positive. Thus

the ODE can be simplified to:

(2ξ(r)− rξ′(r))
(
2rξ′(r)3 + 3rξ′(r)− 2ξ(r)

)
= 0. (38)

This is the main result of this section. The solution of the governing ODE above is discussed

in Eqs.(8) to (10) of the main text.

Supplementary Note 3: Origami mechanics explained by geometry

In the isometric deformation model, the system stored energy is contributed by the fold-

ing creases and bending hinges (introduced by triangulation). Therefore, we first need to

associate angles of the local geometry with parameters of the global geometry. By Eqs. (36),

(25), and (24), we obtain:

cos ρ =
1− 4k2r2

1 + 4k2r2
, (39)

cos θ =
1

1 + 4k2r2
. (40)

Let’s denote φ as the angle between two consecutive diagonal creases, as shown in Fig. 3(a).
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Supplementary Figure 3. Angles at a typical vertex. (a) Angles labeled in the direct geometry. (b)

Angles labeled in the spherical representation at vertex B.

Applying spherical trigonometry at point B (see Fig. 3(b)), we obtain φ as a function of the

folding angle ρ:

cosφ = cos
π

4
cos

3π

4
+ sin

π

4
sin

3π

4
cos(π − ρ) = − 1

1 + 4k2r2
. (41)

Furthermore, we denote the folding angles along the diagonal as β, and the angles between

two square creases as χ. Due to the symmetry of the folded shape, we compute (χ/2) and

(β/2) instead of χ and β (see Fig. 3):

cos
χ

2
= eCA · eBE’ ≈ XM

t ·XM
r =

4k2r2 + 1√
16k4r4 + 12k2r2 + 2

, (42)

sin
β

2
=

sin(χ/2)

sin(π/4)
=

1√
2k2r2 + 1

. (43)

The degree-of-freedom (DOF) counting rule of origami patterns [3, 4] states that the

generic DOF of a two-dimensional triangulated origami pattern (embedded in three-

dimensional space) is given by the number of free boundary edges minus 3. The triangulated

hypar kinematic model has four free boundary edges, therefore, once folded in a certain way

(i.e., a kinematic branch is chosen), the triangulated hypar pattern has only one generic

DOF. However, as we fold a hypar pattern, we cannot use Eqs. (11) and (13) from the

main text to easily predict the trajectory of a certain point on the folded surface because

both the quadratic coefficient k and the r-coordinate of a point (denoted as r = R) change
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simultaneously, despite the fact that the folding kinematics is associated to a single DOF.

This also makes it difficult to compare between different folded states. Let’s denote the

initial coordinate of a point on the diagonal creases as (P, 0) on the flat configuration, and

the current coordinate in the folded configuration as (R, ξ(k,R)). We would like to find

a direct mapping between (P, 0) and (R, ξ). Hence, we re-parametrize the curve ξ such

that the current coordinate is written in terms of P as (R(k, P ), ξ̃(k, P )). The derivation is

explained below.

Supplementary Figure 4. The shape of ξ during folding. (a) The changing shapes of ξ at different

folded states, and how a certain point on ξ changes its coordinate. (b) The local structure of ξ

consists of a series of zig-zag folds of the diagonal creases.

Fig. 4(a) illustrates how the shape of ξ changes and how a certain point on ξ changes

its coordinate. Recall that the local structure of ξ is constructed by zig-zags of the diagonal

creases of the hypar pattern (see Fig. 4(b)). Assuming that each corrugation is infinitesi-

mally thin, according to Fig. 4(b), we relate the differential length of diagonals (denoted as

dp) with the differential arc length (denoted as ds) of ξ by:

dp =
1

sin(φ/2)
ds. (44)

Furthermore, we relate dp with dr through ds [5]:

dp =
1

sin(φ/2)
ds =

√
1 + (ξ′)2

sin(φ/2)
dr. (45)

Integrating Eq. (45), we obtain the length of diagonal creases until the point (R, ξ(R)) on

ξ as follows:

P =

∫ R

0

√
1 + (ξ′)2

sin(φ/2)
dr =

∫ R

0

4k2r2 + 1√
2k2r2 + 1

dr = R
√

2k2R2 + 1, (46)
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As we assume isometric deformation for the analytical model, the initial coordinate P is

unchanged during folding for a point on the diagonal of a hypar pattern. Then we express

R in terms of k and P as:

R(k, P ) =
1

2

√√
8k2P 2 + 1− 1

k2
(47)

Since every value of R has a one-to-one correspondence with P , the shape of folded diagonal

curve ξ can be redefined on the unfolded length of diagonals (denoted as p), according to a

single changing geometric parameter k as:

ξ̃(k, p) = ξ(k, r(k, p)) =

√
8p2k2 + 1− 1

4k
. (48)

The angles can also be expressed as functions of k and p, which are given by:

ρ(k, p) = cos−1

(
2√

8k2p2 + 1
− 1

)
, (49)

β(k, p) = π − 2 sin−1

 √
2√

1 +
√

8k2p2 + 1

 , (50)

θ(k, p) = cos−1

(
1√

8k2p2 + 1

)
. (51)

With Eqs. (48) to (51), we can easily compare the positions of the points on the diagonal

curve at different folded states.

Before we associate the system energy with the geometry of the folded hypar, we need to

define a crease density function η(p) such that:

n =

∫ P

0

η(p)dp (52)

where n is the number of square creases counted from the center until point P . Strictly, η(p)

is a summation of a series of shifted Dirac delta functions with values only at the locations

of crease vertices along the diagonals (i.e. the line of p), which can be defined by:

η(p) =
n∑
i

δ(p− pi) (53)

where δ is the Dirac delta function, and pi’s denote the locations of crease vertices. The strict

definitions of n and η are shown in Fig. 5(a) and (b) by the solid lines, respectively. However,
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Supplementary Figure 5. The crease density function. (a) The crease counting function. The dots

represents the actual data points. The solid line shows the strictly defined continuous function

n(p), while the dashed line shows the smoothed version of n(p). (b) The crease density function

η(p) and homogenized crease density function η̄(p). The solid line refers to the strict definition,

while the dashed line refers to the homogenized version.

such a discrete definition is usually difficult to construct for large patterns. Therefore, we

propose a homogenized crease density function, which is defined as:

η̄(p) =
1

∆p

∫ p+∆p/2

p−∆p/2

η(q)dq =
∆n

∆p
, (54)

where ∆p is taken as an arbitrary interval. The η̄(p) function can be interpreted as the rate

of a smoothed function n changing over p, as shown in Fig. 5 by the dashed lines. We can

first interpolate the data points of (n, p) by a smooth function, and then differentiate it to

obtain η̄(p). For a standard hypar pattern with panel width d being a constant, η̄(p) is equal

to the constant (1/d). Because n cumulatively increases as p increases, then η̄(p) is always

a positive function.

We associate the elastic energy of the system with its geometry. Suppose that the enforced

folding has folded the pattern to a hyperbolic paraboloid with quadratic coefficient k0, which

defines the neutral angles of folding hinges. We define the stored energy of a folding hinge

per unit length (i.e., the underlining constitutive model) as a convex function about the

folding angle with the following properties:

Hρ
F(ρ) ≥ 0, with

∂2Hρ
F

∂ρ2
> 0, and

∂Hρ
F

∂ρ

∣∣∣∣
ρ=ρ0

= 0, (55)
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where ρ0 is the neutral (stress-free) angle of the folding hinge. Consequently, we know that

∂Hρ
F

∂ρ
< 0, when ρ < ρ0; and

∂Hρ
F

∂ρ
> 0, when ρ > ρ0. (56)

A similar constitutive model can be defined for the stored energy of β (folding) angles,

which is denoted as Hβ
F. Thus,

Hβ
F ≥ 0,

∂2Hβ
F

∂β2
> 0,

∂Hβ
F

∂β

∣∣∣∣
β=β0

= 0. (57)

where we designate the neutral angle as β0.

The constitutive model of a bending hinge is defined such that:

Hθ
B(θ) ≥ 0, with

∂2Hθ
B

∂θ2
> 0, and

∂Hθ
B

∂θ

∣∣∣∣
θ=θ0

= 0, (58)

where θ0 is the neutral (stress-free) angle of the bending hinge. Based on observation, the

panels untwist when they are cut out from a folded hypar. Hence, we can assume that the

neutral angles of bending hinges are at θ0 = 0, when all panels are flat (i.e. k0 = 0). Thus,

we obtain that:

∂Hθ
B

∂θ
< 0, when θ < 0; and

∂Hθ
B

∂θ
> 0, when θ > 0. (59)

The simplest constitutive model for folding or bending hinges that satisfies our assumption

is a quadric function. Please refer to Section Supplementary Note 4 of the Supplementary

Information for examples.

Denote the total elastic energy of a hypar pattern as ET, which is given by the summation

of bending and folding energy:

ET = EF + EB, (60)

for the triangulated model. Let P be the total length of diagonal creases from the center of

the pattern, such that (P, 0) is on the boundary of the pattern. The elastic energy stored

in the folding hinges is computed as:

EF = 4

∫ P

0

η̄
[
(
√

2p)Hρ
F +Hβ

F

]
dp , (61)

where (
√

2p) refers to the length of a square crease in the limit of w → 0. We define the
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neutral angles of ρ and β as the folded angles at state k = k0, i.e.

ρ0 = cos−1

(
2√

8k2
0p

2 + 1
− 1

)
, (62)

β0 = π − 2 sin−1

 √
2√

1 +
√

8k2
0p

2 + 1

 , (63)

The elastic energy stored in the bending hinges is computed as:

EB = 4

∫ P

0

η̄(
√

2p)Hθ
Bdp , (64)

where (
√

2p) refers to the length of a bending crease in the limit of w → 0.

Considering Eqs. (49) to (51), we note that the above expressions reveal the bistability of

the folded hypar system. Since the term k always appears in its quadratic form (i.e. k2), we

conclude that a symmetry of system energy (with respect to k) exists for k < 0 and k > 0.

In other words, for any folded state, there are different folded states of identical system

energy, whose shape are defined by k of opposite sign but same magnitude. As a result, if

we can show that there exist a local minimum of system energy of the hypar pattern for

k > 0, the system is guaranteed to exhibit bistability.

Due to symmetry of system energy with respect to k, we only need to consider folded

shapes with k > 0. We show below that there exist a local minimum of system stored energy

for 0 < k < k0, which is true if we can find a k∗ between 0 and k0 such that:

∂ET

∂k

∣∣∣∣
k=k∗

= 0, and
∂2ET

∂k2

∣∣∣∣
k=k∗

> 0. (65)

Differentiating Eq. (61), we obtain:

∂EF

∂k
= 4

∫ P

0

η̄

[
(
√

2p)
∂Hρ

F

∂ρ

∂ρ

∂k
+
Hβ

F

∂β

∂β

∂k

]
dp , (66)

where,

∂ρ

∂k
=

8kp2

(8k2p2 + 1)
√√

8k2p2 + 1− 1
, (67)

∂β

∂k
=

√
2

k

√√
8k2p2 + 1− 1

8k2p2 + 1
. (68)

When k = k0, we have ρ = ρ0 and β = β0, therefore, (∂Hρ
F/∂ρ) = 0, and (∂Hβ

F/∂β) = 0,

which leads to (∂EF/∂k) = 0. When k = 0, we have ρ < ρ0 and β < β0, indicating that
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(∂Hρ
F/∂ρ) < 0 and (∂Hβ

F/∂β) < 0. Because η̄ is a positive function, we only need to examine

the sign of (∂ρ/∂k) and (∂β/∂k) to determine the sign of (∂EF/∂k). Since both Eqs. (67)

and (68) are positive for k > 0, we know that (∂EF/∂k) < 0 for 0 < k < k0. When k → 0+,

we obtain:

lim
k→0+

∂ρ

∂k
= 4p, (69)

lim
k→0+

∂β

∂k
= 2
√

2p. (70)

Hence, (∂EF/∂k) < 0 when k → 0+. On the other hand, differentiating Eq. (64) and taking

θ0 = 0, we obtain:
∂EB

∂k
= 4

∫ P

0

η̄(
√

2p)
∂Hθ

B

∂θ

∂θ

∂k
dp , (71)

where,
∂θ

∂k
=

2
√

2p

8k2p2 + 1
. (72)

We can see that (∂EB/∂k) = 0 when k = 0, and (∂EB/∂k) > 0 when k > 0. In conclusion,

when k → 0+, (∂EF/∂k) < (∂EB/∂k) = 0; when k = k0, (∂EB/∂k) > (∂EF/∂k) = 0.

Hence, we know that:

∂ET

∂k

∣∣∣∣
k→0+

=
∂EF

∂k

∣∣∣∣
k→0+

< 0, (73)

∂ET

∂k

∣∣∣∣
k=k0

=
∂EB

∂k

∣∣∣∣
k=k0

> 0. (74)

Because (∂ET/∂k) is a continuous function, there must exist 0 < k∗ < k0, such that:

∂ET

∂k

∣∣∣∣
k=k∗

= 0. (75)

Furthermore, we let k∗ be the smallest root of Eq. (75), i.e. the first intersection with 0. As

(∂EB/∂k) < 0 when k < k∗, and (∂EB/∂k) > 0 when k > k∗, we know that the derivative

of (∂EB/∂k) must be positive at the point k = k∗. Therefore,

∂2ET

∂k2

∣∣∣∣
k=k∗

> 0, (76)

which indicates that at ET has a local minimum at k = k∗.

The theory is based on the assumption that there exist convex stored energy functions

for folding and bending hinges with different neutral states, i.e. the neutral angles of folding

hinges correspond to a folded state, while the neutral angles of bending hinges correspond
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to the flat (unfolded) state. We have proven that the bistability of the hypar pattern exists

unconditionally, i.e. regardless of the specific constitutive models (i.e. Hρ
F, Hβ

F, and Hθ
B),

and crease offsets (i.e. η). In particular, the bistable behaviour of the hypar pattern is

preserved, including the three cases shown in Fig. 1 and 4 of the main text, i.e. uniform,

random, and functionally graded patterns.

Supplementary Note 4: Bar-and-hinge model for nonlinear numerical analysis

Here, we briefly describe the bar-and-hinge method that we used for the numerical model-

ing of hypar origami. The bar-and-hinge method is a tool for analyzing mechanical behavior

of origami assemblages. Although it simplifies the kinematics of origami, the mechanics

formulation is developed so that the simplified model can capture the essence of the origami

behavior with non-rigid deformations [6–8]. The implementation in this paper is based on

a nonlinear analysis formulation [8] coupled with the so-called N5B8 discretization scheme

[7], which is explained below.

The basic idea of the N5B8 discretization is presented in Fig. 6. Each quadrilateral

panel is divided into four triangles delimited by the diagonals, hence there are 5 nodes and

8 bars within each panel. Triangular panels are not further discretized. In a bar-and-hinge

model, the one-dimensional stiffness of bars represents the in-plane stiffness of panels (e.g.

stretching, shear). Out-of-plane stiffness (i.e. bending and folding) is simulated by rotational

springs constraining each dihedral angle between two adjacent triangular frames. The N5B8

scheme allows the discrete system to capture doubly curved out-of-plane deformations and

isotropic in-plane behavior of panels, yielding a much refined resolution [7] than the com-

monly adopted triangulation scheme [9–11] that simply divide each quadrilateral panel into

two triangles.

We consider the discretized origami assemblage as an elastic system. The total strain

energy (ET) has contributions from the bars (ES), bending hinges (EB) and folding hinges

(EF). The total potential energy of the system is then:

ET(u) = ES(u) + EB(u) + EF(u)− fTu, (77)

where f is the externally applied load, and all the other energy terms are nonlinear functions

of the nodal displacements u. Equilibrium is obtained when ET is locally stationary, and
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Supplementary Figure 6. Schematics of the N5B8 bar-and-hinge model for origami analysis. In-

terior edges (in gray) of panels are assigned with rotational springs representing bending defor-

mations. Boundary edges (in black) shared with other panels are assigned with rotational springs

representing folding deformations.

therefore the equilibrium equation and the finite element matrices can be derived as [7, 8]:

T(u) = TS(u) + TB(u) + TF(u)− f = 0, (78)

K(u) = KS(u) + KB(u) + KF(u), (79)

where:

TS(u) =
∂ES(u)

∂u
, TB(u) =

∂EB(u)

∂u
, TF(u) =

∂EF(u)

∂u
, (80)

and

KS(u) =
∂2ES(u)

∂u2
, KB(u) =

∂2EB(u)

∂u2
, KF(u) =

∂2EF(u)

∂u2
. (81)

The energy contribution for each deformation mode is the summation of elemental contri-

butions, which is defined through elastic constitutive models.

For bar elements, we define the stored energy for a single bar as:

ES = ALW(ε11) (82)

where A denotes member area, L denotes member length, and W is the energy density as

a function of the one-dimensional Green-Lagrange strain ε11. We adopt a one-dimensional

Ogden model [12] for W such that

W(ε11) =
Y

α1 − α2

(
λ1(ε11)α1 − 1

α1

+
λ1(ε11)α2 − 1

α2

)
, (83)

where Y is the modulus of elasticity, α1 and α2 are material constants taken as 5 and 1 [8],

respectively. The principle stretch λ1 is a function of ε11, which is given by λ1 =
√

2ε11 + 1
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[13]. Accordingly, the 2nd Piola-Kirchhoff stress (the energy conjugate stress) is obtained

as

S11 =
∂W
∂ε11

=
∂W
∂λ1

dλ1

dε11

=
Y

α1 − α2

(
λα1−2

1 + λα2−2
1

)
. (84)

For small strains, the constitutive model approximates linear elastic behavior, which occurs

in our simulations as the strains of bar elements are very small (< 1%). Denoting ν as the

material’s Poisson’s ratio, to recover the in-plane Poisson’s effect of the panel, we define the

member areas as [7]:

AX = h
H

2 − νW 2

2H(1− ν2)
, AY = h

W
2 − νH2

2W (1− ν2)
, AD = h

ν(H
2

+W
2
)3/2

2HW (1− ν2)
, (85)

where W = (W1 + W2)/2, H = (H1 + H2)/2, and the subscripts X, Y , D label different

bars, as indicated in Fig. 6(b).

The stored energy of each bending hinge is assumed to be a function of the hinge length

(L) and bending angle (θ), which is given by

Hθ
B =

1

2
LKB(θ − θ0)2, (86)

where KB denotes the bending stiffness constant. We assume KB as [7, 14]:

KB = (1.0)
Y h3

12(1− ν2)LD

(
LD
h

)1/3

, (87)

where LD is the total length of the diagonal on which the bending hinge lies. The scalar

(LD/h)1/3 accounts for the scaling effect of ridge singularity [7, 15]. The resistance moment

(or torque) of the hinge is then given by

τ θB =
∂Hθ

B

∂θ
= LKB(θ − θ0). (88)

We define the bending angle θ ∈ [−π, π), using absolute angles, such that θ = 0 when the

panel is flat. A bending hinge is stress-free when τb = 0, that is, when θ = θ0. In our

implementation, the bending hinges are always assigned with θ0 = 0.

The stored energy of the folding hinges and their corresponding resistance moments are

given by

Hρ
F =

1

2
LKF(ρ− ρ0)2, τ ρF = LKF(ρ− ρ0), (89)

Hβ
F =

1

2
LKF(β − β0)2, τβF = LKF(β − β0), (90)
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Supplementary Figure 7. Folding a numerical model of hypar origami. (a) The applied forces and

kinematic constraints (red roller supports). Total upward and downward forces are balanced. The

numbers are the relative magnitudes of forces normalized by a reference force F0. (b)-(d) Frames

along the folding process. The folding stops when distance D (as shown in green) becomes 80% of

its original length when the sheet is flat (unfolded). (e) The new equilibrium shape after release of

the folding forces and update of the neutral angles of folding hinges. The shape drawn in gray is

the same as in (d), which shows the unbalanced configuration of the origami structure before the

new equilibrium is found.

whereKF is the folding rotational stiffness, and ρ and β denote the folding angles. We assume

KF = KB/2, where KB denotes the average bending stiffness. The stiffness reduction factor

is taken as 2 based on the fact that we perforate the crease lines with equal distant slots that

sum to half of the total crease length.

To numerically fold a hypar pattern, we apply forces at the vertices to fold up the initially

flat pattern, as shown in Fig. 7(a). A small symmetry-breaking perturbation is applied at

the beginning of the loading to trigger one particular folding branch. In addition, because a

flat pleated sheet has many singular deformation modes, it is easy to fold the pattern into

undesired shapes. Thus, to improve the folding effectiveness, we reduce KF further in this
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step to distinguish the desired folding mode from other deformation modes. Please watch

Supplementary Movie 3 for the folding simulation.

After the origami is folded to a hypar, we release the folding forces. To accommodate the

inelastic deformation of folding creases within the nonlinear elastic framework, we update

ρ0 and β0 after we release the folding forces so that the neutral angles of folding hinges are

reset to the current folded state, as shown in Fig. 7(d). Meanwhile, the bending hinges

still have their stress-free states at a flat configuration. As the other elements in the system

remain elastic, after we release the folding forces, the system is unbalanced, and a new

equilibrium must be found. This new equilibrium configuration then results from minimizing

the combined energy (E) of folding (EF), bending (EB) and stretching (ES) of the updated

system. The configurational change before and after finding the new equilibrium is depicted

in Fig. 7(e).

In Fig. 8, the color of the fold lines and the bend lines indicates the value of deformation

angles, mapped onto the flat pattern of the hypar origami. Three different scenarios are

considered: (1) the configurations at the end of enforced folding; (2) the equilibrium con-

figurations of the updated models; (3) and the configurations after the snapping is finished,

corresponding to frame 4 in Fig. 6(b) of the main text. We can clearly see that the dominant

bending angles are forming the alternating asymmetric triangulation pattern in all cases.

Supplementary Note 5: Movie captions

Supplementary Movie 1 Snapping of hypar origami (physical model)

A Mylar based hypar origami display fast snapping between two stable and symmetric

saddle configurations.

Supplementary Movie 2 Snapping of hypar origami (numerical simulation)

Numerical simulation using the bar-and-hinge reduced order model reveals the change of

mechanical states during the bistable snapping of the hypar origami.

Supplementary Movie 3 Folding of hypar origami (numerical simulation)

Numerical model simulates the folding of the hypar origami from a flat sheet.
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Supplementary Figure 8. Out-of-plane deformations (folding and bending) in terms of deformation

angles (in absolute values). The average of kblue and kred interpolated by the blue and red dots are

used as an estimation to the quadratic coefficient k in Eq. (13) of the main text.
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Nomenclature

× Cross product

· Dot product

Ai Coordinate of point (vertex) A in the i-direction

d Panel width

L Corrugation length (=length of the middle folding ridge)

w Dimensionless panel width (:= d/L)

θ1, θ2 Bending angles

ρ, β Folding angles

φ Angles between two consecutive diagonal creases

eAB Vector pointing from point A to B

~n Normals in the local geometry of a corrugation

X The surface approximated by a hypar origami

Xr,Xt Tangents of the global surface

n Normals on the global surface

ξ, ζ Three-dimensional space curves

ξ, ζ One-dimensional curves

k, k0 Quadratic coefficient of hyperbolic paraboloid geometry

ET Total stored energy of a hypar origami structure

ES Stretching energy

EB Bending energy

EF Folding energy

T Internal force vectors

K Stiffness matrices

f Applied forces on a bar-and-hinge model of an origami structure

u Nodal displacements of a bar-and-hinge model

W Strain energy density (of bar elements)

ε11 One dimensional component of the Green-Lagrange strain (of bar elements)

H Stored energy (of rotational spring elements)

Y Modulus of elasticity (initial)

ν Poisson’s ratio
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h Panel thickness

KB Bending stiffness constant

KF Folding stiffness constant
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