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Modulate stress distribution with bio-
inspired irregular architected materials
towards optimal tissue support

Yingqi Jia 1, Ke Liu 2 & Xiaojia Shelly Zhang 1,3,4

Natural materials typically exhibit irregular and non-periodic architectures,
endowing them with compelling functionalities such as body protection,
camouflage, and mechanical stress modulation. Among these functionalities,
mechanical stress modulation is crucial for homeostasis regulation and tissue
remodeling. Here, we uncover the relationship between stress modulation
functionality and the irregularity of bio-inspired architected materials by a
generative computational framework. This framework optimizes the spatial
distribution of a limited set of basic building blocks and uses these blocks to
assemble irregularmaterials with heterogeneous, disorderedmicrostructures.
Despite being irregular and non-periodic, the assembled materials display
spatially varying properties that precisely modulate stress distribution
towards target values in various control regions and load cases, echoing the
robust stress modulation capability of natural materials. The performance of
the generated irregular architected materials is experimentally validated with
3D printed physical samples — a good agreement with target stress distribu-
tion is observed. Owing to its capability to redirect loads while keeping a
proper amount of stress to stimulate bone repair, we demonstrate the
potential application of the stress-programmable architected materials as
support in orthopedic femur restoration.

Natural materials usually possess irregular architecture at the micro-
scale, featured by disorderedness, non-uniformity, and aperiodicity,
which empowers functionally graded properties that are optimally tai-
lored for overall functionalities such as homeostasis regulation1, tissue
remodeling2, body protection3, flight agility4, and stress shielding5.
Examples include wood6, seashells7, bone5, spider silk8, turtle shells3,
and bird feathers4 (Fig. 1a). To reproduce the superior functionalities of
the natural architected materials, their geometric features have been
borrowed to design engineered materials, benefiting applications
in electromagnetics9–12, optics13, and mechanical engineering14–19. In
mechanical engineering, architected materials have been designed to
demonstrate promising properties such as negative Poisson’s ratio20–22,

vibration control23,24, mechanical clocking25, and programmable non-
linear responses26,27, among many others28–34.

Unlike the highly irregular natural materials, most engineered
architected materials are empirically designed by periodically tessel-
lating well-known motifs inspired by crystalline solids and/or artistic
patterns35–39. The study on irregular architected materials is still in its
infancy, owing to the difficulty of effectively modeling their sophisti-
cated three-dimensional (3D) geometries in a nearly infinite space.
A few pioneering models have been proposed, including filtered ran-
dom lattice40–42, phase-separation induced spinodal foam37,43,44, and a
versatile, bio-inspired virtual growth process45. The last work builds
single-scale, homogeneous disordered microstructures with diverse
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material properties by randomly nucleating basic building blocks.
However, to develop superior functionalities as natural materials, it
is necessary to introduce multi-scale, heterogeneous materials by
embedding spatially varying and functionally graded microscopic
features46,47.

Here, we develop a generative computational framework that
guides a virtual growth process to produce materials with hetero-
geneous disordered microstructures, optimized for overall function-
alities such as stress manipulation. Our framework consists of two
interconnected components: a material property optimizer (Fig. 1b)
and a virtual growth simulator (Fig. 1c). In Fig. 1b, thematerial property
optimizer assesseswhether a sub-region of the bulkmaterial shouldbe
solid or void and determines the optimal frequency combinations of
basic building blocks. This information further defines the corre-
sponding microstructure and the desired material properties, parti-
cularly directional elasticity, for that specific material sub-region.
Consequently, the material property optimizer enables the evolution
of thematerial at both themacro andmicro scales, ensuring optimally
distributed local properties that contribute to the desired global
functionality, specifically stress modulation. In Fig. 1c, the virtual
growth simulator45 facilitates the seamless integration of disordered
microstructures with varying homogenized material properties
achieved through different frequency combinations of basic building
blocks. Additionally, a machine learning model is employed to map
these frequency combinations to their corresponding material prop-
erties, which are then fed back into the material property optimizer to

achieve the desired stress distribution. With the material property
optimizer (Fig. 1b) and virtual growth simulator (Fig. 1c) working
synergistically, our proposed framework generates functionally gra-
ded materials in a way analogous to how biological systems are built.
The details of the proposed framework are introduced in the Methods
section.

In comparison to related existing research38,48 that primarily
focuses on designing deterministic and nearly periodic architected
materials, the present study introduces a generative computational
framework for crafting stochastic and aperiodic materials. The incor-
poration of stochasticity and aperiodicity holds the potential to
enhance failure resistance49. Furthermore, unlike the existing studies
that predominantly investigate the performance (such as stiffness) of
individual microstructures, our current study aims at modulating the
stress distribution of functional material pieces comprising hetero-
geneous microstructures.

In this work, we harness the capabilities of the proposed gen-
erative computational framework to modulate the stress distribution
across a spectrum of desired values, stress measures, control regions,
and load cases. For example, weoptimize a femur supportwith tailored
irregular architected materials for promoting orthopedic restoration
after a fracture (Fig. 1d–f and Supplementary Movie 1). The generated
femur support precisely achieves the target stress distribution (Fig. 1e),
preventing potential aseptic loosening and peri-prosthetic fracture50,
while keeping an appropriate amount of shear stress acting on the
fractured region to stimulate bone regeneration51,52. A commercial
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Fig. 1 | Generationof irregular architectedmaterialswithoptimization-enabled
stress modulation and its potential applications. a Natural irregular materials
found in wood, seashells, bones, spider silk, turtle shells, and bird feathers. b A
material property optimizer governs the design variables, microstructures, and
material properties (directional elasticity), guiding the evolution of the bulk
material at both macro and micro scales to achieve the desired stress distribution.
cAvirtual growth simulator produces diverse disorderedmicrostructures basedon
the input frequency combinations of basic building blocks. A machine learning
model further maps the frequency combinations of the building blocks to their

corresponding material properties, which are fed back into the material property
optimizer in (c). d–g The generation and fabrication of irregular architected
materials used for orthopedic femur restoration after a fracture. d The generation
setup including a fractured femur and a support to be filled with four types of basic
building blocks. e The initial, optimized, and target stresses in the control region
around the fracture, where the initial stress corresponds to a homogeneous dis-
tribution of building blocks. f The generated support made of optimized irregular
materials, which are further composed of disorderedmicrostructures illustrated in
the two insets. g The 3D-printed samples at varying scales.
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masked-stereolithography (m-SLA) 3D printer is used to actualize our
design (Fig. 1g) with reduced effort compared to other multi-scale
structural design approaches44. This is becauseour generatedmaterials
are self-supporting ensembles of building blocks with a manufactur-
able minimum feature size.

Results
Manipulatingmechanical stress distribution in varied geometric
regions
We demonstrate our framework starting from generating irregular
architected materials with programmed stress distribution within
varying geometric regions. The design domain and boundary condi-
tions are shown in Fig. 2a, where we consider three stress control
regionswith different geometries: rectangle in Case 1, square inCase 2,
and ring-shape in Case 3. The objective is to control the hydrostatic
stress, defined by σ h = (σ1 + σ2 + σ3)/3, towards a target value σh =0:28
MPa, where σ1, σ2, and σ3 are the three principal stresses53. We define
four types of basic building blocks: cross, arrow, corner, and line
(see Supplementary Fig. 1), which compose the irregular architected
material. We optimize the frequency combination of the four building

blocks over different locations within the material, and grow the irre-
gular architected materials accordingly. As shown in Fig. 2b, these
irregular architected materials are made of randomly yet optimally
distributedmicrostructures,which are seamlessly connected to ensure
material integrity. Although the microstructures display a similar
appearance across the entire piece, they show the spatially varying
distribution of properties, as represented by the D11 elastic modulus
plotted in Fig. 2c. Such spatially varyingmaterial property is optimized
to manipulate the stress distribution within the material to achieve
desired values (Fig. 2d). Here, we note that this excellent stress mod-
ulation effect is not confined to specific design setups, and the current
setup (Fig. 2a) is solely for demonstration purposes. Based on Sup-
plementary Fig. 6 and Supplementary Table 1, the satisfactory stress
modulation effect can be obtained under varying stress measures,
target values, and applied displacements.

To examine the accuracy and reproducibility of the stress control
effect of irregular architected materials, we select Case 3 as a repre-
sentative material to perform a stress convergence study. As shown in
Fig. 2e, we denote the number of basic building blocks in one direction
within one microstructure as the variable k. We investigate how the
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Fig. 2 | Manipulating mechanical stress distribution in varied geometric
regions. a Design domain, boundary conditions, and three distinct stress control
regions (rectangle, square, and ring-shape in Cases 1–3, respectively). The variable
u = 1.5 mm represents displacement loading. Variables σh and σh are actual and
target hydrostatic stresses (inMPa), respectively.bOptimized irregular architected
materials made of randomly yet optimally distributed microstructures. c Spatially
varying distribution of properties, as represented by the D11 elastic modulus (in
MPa). d Precise stress manipulation (in MPa) is realized by the spatially varying
material property. e Stress convergence study of the generated material in Case 3.

The variable k represents the number of basic building blocks in one direction
withinonemicrostructure. Each error bar represents thedistributionofhydrostatic
stress of one specimen. The dots and the half-lengths of error bars indicate the
mean values and the standard deviations, respectively. f Experimental setup for
measuring the displacement field. g,h Displacements (in mm) in the loading
direction obtained experimentally from the digital image correlation (DIC) and
numerically from the finite element analysis (FEA), respectively. i–k Detailed
comparisons of the average displacements within the control regions for the 3
cases. The measured values and error bars of experiments are also plotted.
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hydrostatic stress (σh) in the control region varies with different k
values (k = 1, 2, 4, 6, 8, 10, 12). The larger the k value, the smaller the
microstructural feature size. Considering the randomness of irregular
architected materials, we generate 5 specimens for each k value based
on the same spatial distribution of frequency combinations. For each
specimen, we perform the finite element analysis (FEA) at the micro-
structural level and obtain the mean value (μ) and the standard
deviation (s) of the computed hydrostatic stress in the control region
(see Methods section). In Fig. 2e, the mean value (μ) converges to the
target, and the standard deviation (s) decreases as k increases, indi-
cating the improving accuracy of the stress control effect. This
improvement results from the separation of the length scales between
the bulk material and the microstructures for large k values. Com-
paring μ and s of the 5 specimenswith the same k, we observe that they
stay close to each other for k > 1, demonstrating reliable reproduci-
bility of the stress control effects. Similar conclusions for Cases 1 and 2
are drawn in Supplementary Section 5.

To examine the computed architected materials, we use 3D
printing (m-SLA) to manufacture five replicates of each sample shown
in Fig. 2b with k = 4, and conduct experiments with setups shown in
Fig. 2f (see Methods section). Figure 2g and h show the displacement
fields in the loading direction of one experimental sample (corre-
sponding to Case 3 in Fig. 2a) via digital image correlation (DIC) and

one numerical sample via FEA — consistent displacement fields are
observed. Detailed comparisons are presented in Fig. 2i–k on the
average displacements within the control regions for the 3 cases,
respectively. The discrepancy between the experimental and numer-
ical results is negligible, demonstrating reliable stress modulation of
the optimized irregular architected materials, given that the stress
error is proportional to the displacement error considering linear
elasticity.

Simultaneous mechanical stress modulation in multiple
complex regions with distinct target values
We further elucidate the feasibility of leveraging irregular architected
materials to simultaneously achieve distinct target stress values across
multiple geometrically complex control regions. The design domain,
boundary conditions, and stress modulation regions are shown in
Fig. 3a.We divide these complex patterns into three control regions by
their colors. The objective is to simultaneously modulate the hydro-
static stresses (σh) in these regions to different target values, σh=0.1,
0.3, and 0.5MPa for control regions 1–3, respectively. After optimiza-
tion, the converged (numerical) hydrostatic stresses approach the
target values, as shown in Fig. 3b.

For better visualization, we plot the hydrostatic stress field, σh, for
both the initial (homogeneous distribution of basic building blocks)
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and optimized materials in Fig. 3c. As expected, by optimizing the
heterogeneous distribution of basic building blocks, the hydrostatic
stresswithin the irregular architectedmaterial is accuratelymodulated
to meet the target values (Fig. 3c). We also calculate the 2-norm error
of the hydrostatic stress field, jjσh � σhjj2, for both the initial and the
optimized materials (Fig. 3d). Figure 3e–f illustrate the disordered
microstructures of the optimized architected materials at two differ-
ent locations of the sample. The optimized positions and orientations
of basic building blocks in these irregular architected materials can
redirect the load path and then contribute to the stress modulation.
Figure 3g shows the optimized heterogeneous distribution of fre-
quency combinations for each type of basic building block. Here, we
reiterate that the proposed generative computational framework is
not limited to specific target stress values. Supplementary Fig. 7
showcases the stress modulation effects for various orders of target
stress, and the actual stress aligns closely with the target ones, indi-
cating the robust performance of the framework.

Lightweight architected materials for multifunctional stress
modulation
We now focus on lightweight and multifunctional architected materi-
als with optimized global material layout (built upon density-based
topology optimization26,27,54) and local frequency combination of
microstructures (Supplementary Movie 2). Figure 4a shows the design
domain, boundary conditions, and the stress control region. Our
objective is to control the hydrostatic stress in the same material to
achieve two different stress modulation effects — stress amplification
and inversion — in two load cases. The optimized material achieves
both effects simultaneously, as shown in Fig. 4b, c. Thesefigures depict
the target, initial, and optimized hydrostatic stresses in the control

region. Under Load Case 1 (Fig. 4b), the hydrostatic stress increases
eightfold from around 0.01 to 0.08MPa, demonstrating a significant
stress amplification effect. In contrast, under Load Case 2 (Fig. 4c), the
hydrostatic stress inverts from positive (tension-dominated) to nega-
tive (compression-dominated) signs within the control region even if
under the tensile loading.

To validate such a multifunctional modulation effect, we perform
the experiments (Fig. 4f and g) and compare the results side by side
with the numerical ones obtained via FEA (Fig. 4d and e). Specifically,
we examine the average displacements in the loading direction within
the control region under two load cases. FEA predicts the average
displacement as uFEA

x =0:556mm and uFEA
y =0:537mm in the two load

cases, respectively. Experiments predicts the corresponding average
displacements as buDIC

x =0:576±0:004 mm and buDIC
y =0:501 ±0:029

mm (further averaged over three replicates). Based on these mea-
surements, we compute the errors as 3.5% and 7.1% for the two loading
cases, respectively, and conclude the multifunctional stress modula-
tion effect is reliable.

We also present the virtual growing process for generating opti-
mized materials with k = 1 in Fig. 4h. The basic building blocks grow
randomly yet optimally and seamlessly, mimicking the growth of
natural materials. Figure 4i shows the physical sample manufactured
via 3D printing (m-SLA). Such fabrication is effortless because the
generated samples are self-supporting ensembles of basic building
blocks with manufacturable minimum feature sizes (larger than
400 μm for m-SLA). Most importantly, this example demonstrates the
possibility of simultaneously optimizing the global-level material lay-
out and the local-level frequency combination of microstructures.
Such simultaneous optimization enables versatile yet lightweight
materials promising for biological applications55.
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Potential application to orthopedic femur restoration
Finally, we present a biomedical application of orthopedic femur
restoration using optimized irregular architected materials demon-
strating versatile mechanical stress modulation. Such modulation pro-
motes the regeneration of fractured femurs with precise shear stress
stimulation, avoiding stress shielding caused by traditional metal plates
or intramedullary rods56,57. As illustrated in Fig. 5a, a healthy femur can
efficiently transmit forces, F, applied at its two ends and yields a rela-
tively uniform compressive stress field (red arrows in the inset).
Unfortunately, femur fractures are prevalent, especially among elder
individuals, and result in stress concentration at the crack tip, increasing
the risk of further fracture propagation58 (Fig. 5b). Traditional methods
of repairing a fractured femur involve attaching a stiffer external plate
around the fracture with screws (left part in Fig. 5c). Due to the stiffness
difference between the femur and the external plate, stress shielding
occurs, which further induces aseptic loosening, chronic pain, and peri-
prosthetic fracture56,57. To address this issue, one potential solution is to
utilize support made of architectedmaterials (right part in Fig. 5c). This
support systempartially transmits compressive stress and then initiates
shear stress (green arrows) when subjected to transverse pressure (blue

arrows) between the femur and the support. Consequently, this shear
stress induces relative micromotion perpendicular to the pre-existing
fracture, thereby stimulating femur regeneration59. In this work, for
illustrative purposes, we designate the target shear stresses as τ = � 5:0
and τ = 5:0MPa for control regions 1 and 2 (the translucent view in
Fig. 5d), respectively. These specified target values are intentionallywell
below the shear strength range of human femurs (51.6MPa–65.3MPa
for cortical bone60) tomitigate the risk of inducing additional fractures.
Notably, these target stress values correspond to a relative micromo-
tion of 0.3mm of the femur around the fracture (see Supplementary
Fig. 8), falling within the suggested range of [0.2, 1.0]mm for femur
restoration59. A crucial aspect that must be addressed is the precise
modulation of the shear stress to the desired level.

The specific problem is shown in Fig. 5d. Simplifying our femur
model, we treat it as an isotropic passive material with Young’s mod-
ulus of E = 5.0 GPa. This selection is informed by the predominant
cortical bone composition in the femur’s diaphysis, where Young’s
modulus is approximately 16.7GPa57. In addition, the homogenized
Young’s modulus of the femur should be further reduced to account
for themarrow cavity within the femurwhoseYoung’smodulus ranges
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and the y-axis represents the values of the selected stress measure (shear stress
here). g Comparison between the numerical and physical samples of optimized
architected materials at varying scales.

Article https://doi.org/10.1038/s41467-024-47831-2

Nature Communications |         (2024) 15:4072 6



from0.25 to 24.7 kPa61. Furthermore, the load-bearingdefect (fracture)
is directly reflected in the femur geometries (see Supplementary
Fig. 8). Here, we note that the isotropy assumption yields results
comparable to those obtained with orthotropic materials62, and the
proposed framework is applicable for amore intricate femurmodeling
with additional computational cost.

The objective in this example is to control the shear stress on the
femur surface and around the fractured region to target values
(Fig. 5d) that are assumed to stimulate tissue regeneration. To
accomplish this goal, we utilize the proposed framework to optimize
the heterogenous distribution of microstructures and then grow the
irregular architectedmaterials (Fig. 5e and SupplementaryMovie 1). To
visualize the stress modulation effect, Fig. 5f presents illustrative (left)
and simulated (right) stress distributions. In the simulated stress dis-
tribution, the x-axis represents the finite elements in the stress control
regions, while the y-axis represents the values of the selected stress
measure (shear stress in this case). It is important tonote that the initial
stress distribution among the controlled elements is highly nonuni-
form due to the complex geometry of the femur (i.e., varying cross-
sections and embedded fracture), despite the initial homogeneous
distribution of building blocks within the support domain. However,
after optimization, the actual stresses uniformly reach the target
values. To validate the manufacturability of these materials, we use
approachable 3D printing (m-SLA) to fabricate the generated archi-
tected materials. The fabricated samples are compared with the
numerical ones side-by-side (Fig. 5g)— eachprintedbuildingblock is as
small as 1.5 × 1.5 × 1.5mm3. Such promising manufacturability benefits
from the generated materials’ self-supporting feature and the pre-
defined feature size of the basic building blocks.

Discussion
In this study, we uncover the fundamental relationship between the
stress modulation functionality and the irregularity of bio-inspired
architected materials, which are created by a generative computa-
tional framework. This framework employs a material property opti-
mizer to enable the overall stress modulation functionality and a
virtual growth simulator to seamlessly create irregular architected
materials that conformwith the desired property distribution within a
piece of material. We examine the stress modulation functionality of
generated materials for various desired values, stress measures, con-
trol regions, and load cases — a good agreement with target stress
distribution is observed, both numerically via FEA, and experimentally
via DIC. Such stress modulation functionality can be promising for
biomedical applications. For instance, we demonstrate the potential
applicationof the irregular architectedmaterials as a support structure
in orthopedic femur restoration that is capable of redirecting the load
while stimulating tissue regeneration. In addition, the generated
architected materials are self-supporting ensembles of basic building
blocks with a manufacturable minimum feature size, free of any thin
and dangling parts, and can be manufactured by approachable 3D
printing technologies. We remark that the proposed framework is
ready for extension to handle complex scenarios involving multi-
physics and nonlinear responses. Such extension has the potential to
benefit various engineering applications, including biomedical devi-
ces, bio-mimetic robots, and lightweight space structures.

Moving forward, we anticipate incorporating more biological
considerations into the framework and conducting in-vivo tests to
validate the designed support for orthopedic femur restoration. To
achieve this goal, we plan to employ a more representative femur
model reflecting its original porous structures and spatially varying
material properties. In addition, we need to incorporate biological
design variables63 including the porosity, pore size, and the specific
surface area of the support and the biological constraints, including
the minimum stiffness and fracture resistance58 of the femur. We
also need to ensure the biocompatibility of the support material64.

Furthermore, during femur restoration, as the bone consolidates and
the callus stiffness increases, enlarging the target shear stress may be
necessary to maintain the same level of micromovement of femur
fragments around the fracture. To accommodate varying target stress
levels, we can reformulate the design task into a simultaneous control
problem akin to Fig. 4. Consequently, the generated support can
modulate stress to different levels as the femur progresses through
different healing states.

Moreover, in the context of orthopedic femur restoration, our
assumption entails a perfect bonding interface between the femur and
the support. It is crucial to note that in real in-vivo applications,
aligning artificial materials with biological tissues demands the
expertise and careful consideration of the operator. Additionally, there
is a possibility of local stress concentration along the interface
between the femur and the support composed of artificial micro-
structures. Despite the potential for stress concentration, the pro-
posed generative computational framework primarily modulates the
homogenized stress distribution rather than focusing on local stress
patterns. This approach allows for the control of the global relative
displacement of the femur perpendicular to the fracture, as illustrated
in Supplementary Fig. 8, with the ultimate goal of stimulating tissue
regeneration. We also note that the efficacy of such stimulus becomes
more reliable, characterized by fewer variations, when employing a
greater number of building blocks in each microstructure (Fig. 2e and
Supplementary Fig. 10).

Beyond biological considerations, the stress modulation perfor-
mance can be further enhanced by exploring alternative building
blocks. In our current study, we concentrate on investigating a specific
set of building blocks (in 2D and 3D, respectively) to modulate stress
distribution. Referring to Figs. 4, 6 in ref. 45, the use of alternative
building blocks with different geometries can significantly impact the
material property space and, consequently, influence stress modula-
tion effects. Additionally, due to the anisotropy of material properties
inmicrostructures, expanding thematerial property space by allowing
free elongation and rotation (as opposed to restricting it to multiples
of π/2) is a potential improvement.

Methods
The proposed generative computational framework (Fig. 6) consists of
four steps: creating a material database, training a machine learning
model, performing macroscopic topology optimization, and applying
a bio-inspired virtual growth simulator. Below, we present the overall
framework along with its four components, as well as the associated
manufacturing and experimental setups.

Overall framework
To generate the irregular architected materials, Fig. 6 provides a
detailed exposition of the proposed generative computational fra-
mework. As shown in Fig. 6a, this framework begins by creating a
discrete material database containing the prescribed building blocks,
frequency combinations, and the generated microstructures. Follow-
ing numerical homogenization65, the material properties of the
microstructures are derived, and these properties are then correlated
with the microstructures’ frequency combinations. To establish a
continuous relationship between the frequency combination and the
material properties, a machine learning model is trained (Fig. 6b) to
predict the independent components of the stiffness matrix based on
the input frequency combination. Subsequently, macroscopic topol-
ogy optimization is performed (Fig. 6c) to optimize the design vari-
ables defined on the finite elements within the design domain to meet
the target. During this optimization process, a density variable is
defined to describe whether a finite element is filled with a micro-
structure (solid) or not (void). Additionally, frequency variables are
defined to characterize the frequency combination of building blocks
if the finite element is filled with a microstructure. After defining these
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design variables, themachine learningmodel from Fig. 6b is utilized to
predict the spatial distribution of material properties. Subsequently,
FEA is conducted to derive the stress distribution. Guided by the gra-
dient information, the design variables undergo iterative updates by
the optimizer until the actual stress distribution converges to the
target. Finally, based on the optimized density and frequency vari-
ables, we apply the virtual growth algorithm to grow the irregular
architected materials capable of modulating the stress distribu-
tion (Fig. 6d).

Here, we remark that the original virtual growth algorithm in45

mainly yields materials with one intuitively specified frequency combi-
nation (i.e., one finite element and one microstructure). In the current
study, we generalize this algorithm to account for spatially varying and
optimized frequency combinations and densities (solid or void) within
different finite elements. In the generalized algorithm (Fig. 6d), indivi-
dual finite elements are assigned unique frequency combinations, and
all building blocks within a finite element adhere to the corresponding
frequency combination of that finite element. Consequently, the gen-
erated materials consist of heterogeneous microstructures.

Creating a material database
To create the material database, we uniformly sample 200 frequency
combinations of four basic building blocks, ξ1–ξ4, on the hyperplaneP4

i = 1 ξ i = 1, for both two-dimensional (2D) and three-dimensional (3D)
cases. Using the virtual growth algorithm45, we then generate 100
specimens of irregular architected materials for each frequency com-
bination, resulting in 20,000 square specimens in 2D and 20,000
cubic specimens in 3D. Each 2D specimen contains 40 × 40 building
blocks, and each 3D specimen contains 10 × 10 × 10 building blocks.
To obtain the homogenized elasticity tensor (a 3 × 3 matrix in 2D
and a 6 × 6 matrix in 3D in matrix notation66) of the irregular

architectedmaterial, we utilize a numerical homogenization approach
in65. Specifically, we use first-order quadrilateral elements in 2D and
frame elements in 3D in FEA to compute the global stiffnessmatrix.We
then compute the average homogenized elasticity tensor for every
100 specimens corresponding to the same frequency combination.
This process establishes the constitutive relationships between the
frequency combinations and the homogenized elasticity tensors of
disorderedmicrostructures, resulting in 200 pairs in 2D and 200 pairs
in 3D. See more details in Supplementary Section 1.

Training a machine learning model
To establish a continuous and differentiable relationship between the
frequency combination and the homogenized elasticity tensor of dis-
ordered microstructures, we train a fully connected neural network to
capture such complex information. This neural network comprises one
input layer with 4 nodes corresponding to the frequencies of 4 basic
building blocks (ξ1–ξ4), two hidden layers with 512 and 256 nodes,
respectively, and one output layer with 6 nodes in 2D and 21 nodes in
3D corresponding to themaximumnumbers of independent entries in
the homogenized elasticity tensor. We employ the rectified linear
activation unit (ReLU) as the activation function, the mean squared
error (MSE) as the loss function, and the Adam algorithm67 as the
optimizer. A total number of 200 frequency–property pairs in the
previous material database are randomly classified into training data
(160 pairs) and testing data (40 pairs) for both 2D and 3D cases,
respectively. To optimize the neural network’s parameters, we mini-
mize the loss function. We train the neural networks for 1000 epochs
by using an adaptive learning rate, 10−2 for the first 200 epochs, 10−3 for
epochs 201–500, and 10−4 for the remaining epochs. After the training,
the neural network performs well in predicting the homogenized
elastic properties, as evidenced by the small MSEs of 0.134MPa in 2D
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Fig. 6 | Proposed generative computational framework. a Material database
creation. The bottom panel is the material property space, and the details are
explained in Supplementary Section 1.4. b Machine learning (ML) model for pre-
dicting the material properties based on the input frequency combination.

cMacroscopic topology optimization that determines the optimal design variables
to modulate the stress distribution to the target. d Virtual growth simulator for
generating the irregular architected materials based on the optimized design
variables.
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and 0.296MPa in 3D, in comparison to the correspondingmean values
of 2.687MPa in 2D and 7.344MPa in 3D. See more details in Supple-
mentary Section 2.

Performing macroscopic topology optimization
To optimize the layout and the frequency combination of disordered
microstructures, we propose a macroscopic topology optimization
framework consisting of the following procedures. First, we para-
meterize the microstructural layout with a density field, ρ 2 ½0,1�, and
the microstructural frequency combination with frequency fields, ξ i 2
½0,1� for i = 1, 2,…,Nb, where Nb= 4 is the number of types of basic
building blocks. The density field ρ= 1 represents the presence of
microstructures, while ρ =0 corresponds to voids. The frequency field
ξ i denotes the frequency of the i-th basic building block. Second, we
interpolate the elasticity tensor, Dðρ,ξ1,ξ2, . . . ,ξNb

Þ, as a function of the
density and frequency fields to compute the stress response in FEA.
Next,we cast anobjective function, J, to represent the stressmodulation
error for varying target values, stress measures, control regions, and
load cases. Finally, we formulate the topology optimization problem to
find the spatially varying ρ and ξ i, minimizing J, subjected to a material
volume constraint. We implement this optimization formulation with
the Python programming language68 and the FEniCSx package69. See
more details in Supplementary Section 3.

Applying a bio-inspired virtual growth simulator
Based on optimized density and frequency fields, we use the virtual
growth simulator built upon45 to generate the microscopic irregular
architected materials. Specifically, we propose a two-mesh-projection
scheme (see Supplementary Section 4.2) to project the optimized
density (ρ) and frequency (ξ i for i = 1 to Nb) fields obtained from
topology optimization onto a structuredmesh containing square grids
in 2D and cubic grids in 3D, and each grid corresponds to one dis-
ordered microstructure. The projected density field determines whe-
ther a grid should be filled with microstructure or not. If filled, the
projected frequency fields further determine the optimal frequency
combination of this grid and guide the virtual growth simulator to
grow basic building blocks. During the virtual growing process, each
newly filled building block needs to satisfy the prescribed frequency
combination and adjacency rules associated with its neighboring
blocks. Eventually, we create an optimal and seamless integration of
disordered microstructures. Notably, the virtual growth simulator
used in this work extends the original virtual growth program45 in two
aspects. First, the original program focuses on a homogeneous dis-
tribution of basic building blocks, while our simulator features a het-
erogeneous distribution of building blocks. Second, the original
programrelies on intuition-based input frequency combinations,while
the current approach follows the optimized density and frequency
fields obtained from macroscopic topology optimization. These two
improvements enable optimalmicrostructural layouts and customized
local material properties, which are crucial for precise stress modula-
tion. See more details in Supplementary Section 4.

Manufacturing by 3D printing
The physical samples of the optimized irregular architected materials
are 3D printed using the m-SLA technology. Specifically, we use an
Elegoo Saturn 2m-SLA 3D printer with Elegoo water-washable resin
materials. This printer features a layer-by-layer curing process by using
ultraviolet light shining on a resin vat. The allowable printing volume is
219 × 123 × 250mm3, and the layer height ranges from 10–200 μm.
Based on our printing tests, the minimum printable feature size is
400 μm. The 3D printing involves the following steps: generating
geometric models using an in-house Python code, converting geo-
metric models to STereoLithography (STL) files with PyVista
software70, converting STL files to Color Dependent Plot Style (CTB)
files with Chitubox software, printing CTB files with the Elegoo printer,

washing printed samples with Original Prusa Curing and Washing
Machine (CW1S), drying washed samples with tissue papers, and cur-
ing dried samples with CW1S again. The majority of specimens are
printed in one piece, except for the full-scale femur due to the limited
printing volume. We print this full-scale femur in two parts and bond
them with super glue (Loctite, Henkel Corporation). Finally, we apply
metallic paint (Krylon Fusion All-In-One, Krylon Products Group) on
printed architected materials for better visualization.

Mechanical characterization
We perform all experiments using an Instron 68TM-30 universal test-
ing machine. For material characterization, we manufacture five
dogbone-shaped specimens and perform uniaxial tensile tests with a
5mm/min loading rate via a 300 kN load cell. We obtain the average
Young’s modulus and the average Poisson’s ratio as 1162.51MPa and
0.40, respectively. For testing the stress modulation effect (via dis-
placement fields), we employ the same setup of uniaxial loading for all
irregular architectedmaterials. To track the displacement field, we use
a marker pen to draw dispersed markers on the stress control region.
We then record videos of the marker movement with a camera
(Sony Alpha 7R III, Sony Corporation) and analyze the displacement
field using the DIC technique by Ncorr software71.

Data availability
The datasets generated in this study are provided in the Source Data
file. Source data are provided within this paper.

Code availability
The computer code that supports the findings of this study has been
deposited in the GitHub repository at https://github.com/jiayingqi/
Heterogeneous-Virtual-Growth under accession code https://doi.org/
10.5281/zenodo.10963129. The reader can download and execute the
code with guidance from the README document.
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