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Abstract 
Arisen from the geometric arrangements of panels and creases, unique mechanical properties such as 
foldability endow origami with promise for developing novel tunable and functional structural 
systems. To promote engineering applications of origami, a simplified but effective approach for 
investigation of the nonlinear mechanical behavior of non-rigid origami structures is essential. We 
propose a fully nonlinear, displacement-based formulation, for constructing quasi-static finite element 
analyses of origami structures based on a previously established bar-and-hinge simplification. The 
formulation leads to an efficient and robust numerical approach for predicting large displacements and 
large local deformations of origami structures. Comparison between actual paper-made models and 
numerical simulations hints the ability of the proposed approach in capturing key features of origami 
deformation. Thus the current work builds up a connection between theory and practice of origami 
structures, which has the potential to impact design, education, and applications of origami. 

Keywords: origami, nonlinear analysis, bar-and-hinge model  

1. Introduction 
Currently, there are mainly two ways to analyze the deformation of origami structures. The first 
approach considers only the kinematics of the structure, for example, the rigid origami simulator by 
Tachi [12]. Some periodic origami patterns have closed-form expressions for their rigid mechanisms 
(Gattas et al. [2]). However, it is known that actual origami structures usually exhibit additional 
degrees of freedom beyond rigid folding mechanisms (Silverberg et al. [11], Wei et al. [13]). Due to 
the flexibility of the materials being used, the origami panels might be subjected to stretching, 
shearing and bending. Thus the rigid origami assumption does not reflect the true behaviors of a 
physical origami structure. The second approach is to build full finite element (FE) models using shell 
elements (Gattas and You [3]). It provides thorough information about the deformations of origami 
structures, including local stress distribution, but such a modeling requires a lot of detailed 
information of the design and the analysis is typically computationally intensive. Therefore, it is not 
suitable in many instances, for example, at the preliminary design stage, when detailed information is 
not available and iterations of designs are needed before a final decision. Sometimes predictions about 
the global mechanical behavior of origami, given just the crease pattern and general characteristics of 
the stiffness of panels, is what is really needed.  

In 2011, Schenk and Guest [9] proposed a simplified bar-and-hinge model for the structural analysis 
of origami structures. This simplification of origami sheets also works as a foundation in our proposed 
analysis approach. In Schenk and Guest [9], the structural analysis formulation is only developed up to 
infinitesimal deformations and displacements. However, for many engineering applications, for 
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example, design of solar arrays (Zirbel et al. [16]), origami’s ability to undergo large configurational 
transformations is essential. Therefore, a desired simplified analysis approach must also be able to 
capture the large displacements and local deformations of origami structures, which requires an 
appropriate nonlinear formulation.  

To promote engineering practice of origami, a simplified but effective analysis tool based on a fully 
nonlinear formulation is developed in this work. This paper will focus on the computer 
implementation (in MATLAB code) of the proposed nonlinear analysis approach. The objective is to 
provide future researchers in origami engineering with an open-source and easy-to-use tool that serves 
as an assistant for research involving structural analysis of origami. The manuscript is organized as 
follows: the formulation will be introduced in Section 2. Section 3 explains details of the 
implementation. One example is provided in Section 4 to illustrate the capability of the tool.  

2. Formulation basics 
The bar-and-hinge simplification of origami is similar to the mass-spring system used in fields such as 
computer graphics for cloth animation (Bridson [1]), and chemistry for molecular dynamics simulation 
(van Schaik [8]). In structural analysis, under static and quasi-static loading, the mass is neglected 
(Wriggers [15]). The bar-and-hinge model was explicitly defined in the context of origami engineering 
as a simplification of origami sheets by Schenk and Guest [9]. The basic concept is illustrated in 
Figure 1, where a piece of simple fold is simplified to a bar frame with a rotational spring attached to 
the folding line (ac) to represent the folding stiffness of the origami shell. In case of the bending of 
panels, especially quadrilateral panels, it has been confirmed both theoretically and experimentally 
(Witten [14], Silverberg et al. [11]), that the bending curvature will mainly localize along a diagonal 
of the panel. Let us call such a diagonal a bending line. Thus, Figure 1 also applies to modeling of a 
bending deformation. Panels that have more than 4 nodes need further investigation to find proper 
triangulation schemes to represent their bending modes. 

 
Figure 1: Illustration of the bar-and-hinge model for origami simulation. 

Assuming that the structure is nonlinear elastic, we can write down the expression for the total 
potential energy of this simplified origami model:   

 bar spr extU U VΠ = + −   (1) 

The total potential energy contains 3 additively separable terms: (1) the strain energy stored in bars 
(Ubar), accounting for the in-plane deformation strain energy of the origami sheet; (2) the strain energy 
stored in bending and folding deformations (Uspr), simulating the out-of-plane deformation strain 
energy; and (3) the work (Vext) done by external loads. Thus the equilibrium of the system is given as: 

 0sprbar
bar spr

UU ∂∂∂Π
= + − = + − =

∂ ∂ ∂
F T T F

u u u
  (2) 
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where u is the nodal displacement vector, and Tbar and Tspr denote internal forces. Accordingly, we 
have the tangent stiffness matrix as a summation of the contributions from both the bars and the 
rotational springs: 

 T bar spr= +K K K   (3) 

Considering both material and geometric nonlinearities, for each bar element, we assume its stored 
energy density is W, as a function of the one dimensional Green-Lagrange strain Ex. Thus its internal 
force and tangent stiffness matrix can be expressed as (Wriggers [15]): 

 i x x
bar i i i i x

x i i

E EWA L A L S
E

∂ ∂∂
= =

∂ ∂ ∂
T

u u
   (4) 
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      ∂ ∂ ∂ ∂ ∂ ∂∂ ∂   = + = +   
∂ ∂ ∂ ∂ ∂   ∂ ∂ ∂      

K
u u u uu u

  (5) 

where ui contains the associated degrees of freedom of a single bar element. The 2nd Piola-Kirchhoff 
stress and the tangent modulus (scalar) are denoted as Sx and C, respectively. The expression is for an 
individual bar element and there is no summation indicated by the repeated indices.  

Similarly, assuming the stored energy in a rotational spring element is ψ, which is a function of the 
dihedral angle θ, we obtain: 

 j
spr j j

j j
L L Mψ θ θ

θ
∂ ∂ ∂

= =
∂ ∂ ∂

T
u u

  (6) 
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K
u u u uu u

  (7) 

where M denotes the resisting moment per unit length, and k denotes the tangent rotational stiffness. 
Compared to the linear elastic formulation of Schenk and Guest [9], the stiffness matrix of the entire 
structure is augmented with second-order terms, and it is a function of the displacements instead of a 
constant matrix.  

3. Implementation  
This section describes the main aspect of the MERLIN software and how it can be utilized to model 
general origami patterns. It includes information about the domain definition, model definition, 
constitutive relationships, nonlinear solution scheme and output data management.  

3.1. Domain definition  
To define the geometry and topology of an origami structure, two variables must be specified: (1) the 
coordinates of nodes (vertices), and (2) the groups of nodes that defines the panels. The coordinates of 
the nodes are stored in a Nn×3 matrix Node, of data type “array”, where Nn is the number of nodes. 
Each row p of the matrix has the nodal coordinates x, y and z for node p. The topology information is 
stored in variable Panel, which is of data type “cell array”. This allows freedom on defining origami 
patterns that contain panels with different numbers of nodes, for example, quadrilaterals and triangles. 
Therefore, the variable Panel has Np elements, and each element is a vector containing the indices of 
the nodes in a particular panel. The indices should appear following a counter clockwise order by 
geometric adjacency. For example, if Figure 1 shows a panel, it shall be labeled as [a, b, c, d]. 

The boundary conditions are defined following a conventional manner in truss analysis. A matrix 
Supp contains the information about supports. Each row of Supp consists of a node index, and three 
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displacement fixities (0 or 1) in the x, y, and z directions respectively.  The loading information is 
collected in another matrix Load, each row of which consists a node index, and applied forces in x, y 
and z. A zero specifies no force in that direction.  

The conversion of the model from the original origami sheet to the simplified bar-and-hinge model is 
automated in the implementation. This feature brings a lot of convenience because then users just need 
to provide essential information about their origami sheets, and do not need to worry about the 
remodeling with bars and rotational springs. The procedure is elaborated in the following sections. 

3.2. Model definition 
With the input variables Node and Panel, the simplified bar-and-hinge model can be defined 
correspondingly. The data to define a bar-and-hinge model are stored in three variables: Fold, Bend 
and Bars, as listed in Table 1. The Fold and Bend variable have the same format. Following the nodal 
indices in Figure 1, each row of Fold (or Bend) contains a vector with four entries: [a, c, b, d], where 
the link ac identifies the rotation axis. Such a group of four nodes forms a rotational spring element. 
Essentially, the variables Fold and Bend can be combined into one variable because they have 
information of the same type. The only difference is the corresponding rotational stiffness. For 
educational purpose, we keep them separate in this tool. The variable Bars contains all the pairs of 
nodes as edges in the triangulation, which defines the bar elements. 

Bending lines are first defined. For triangular panels, the current setup requires no further 
discretization. For quadrilateral panels, each of them will be divided into two triangles by the shorter 
diagonal which will become a bending line. If the two diagonals are of equal length, depending on the 
order of indices listed in the variable Panel, the link connecting the first and third node will be 
assigned as a bending line. Panels that have more than 4 nodes are not automatically supported, 
however, one may divide such panels into triangles manually and assign the internal links as bending 
lines. 

Table 1: Bar-and-hinge model definition variables 

 
Each element for bending (e.g., [a, c, b, d]) contains two triangles, indexed by [a, c, b] and [a, c, d]. 
Combining with the triangular panels, we obtain a triangular mesh of the entire origami sheet as an 
immediate consequence. Based on this triangulation, we define an incidence matrix as 

 ,

1,    if node  is in triangle 
[ ]

0,    otherwisep q

p q
= 


C                                   (8) 

Then the element-wise adjacency matrix can be obtained as 

 T
E =G C C  (9)  

The off-diagonal entries of GE show how many nodes are shared by two triangles. If entry (m, n) 
equals 2, it means that triangle m and triangle n share an edge. Then there are four nodes contained in 

Variable Name Size Description

Fold N f  × 4
List of all the rotational spring elements representing folding 
action. Each row lists the indices of 4 nodes with the first 
two refering to the pair of nodes that form the rotation axis.

Bend N d  × 4 List of all the rotational spring elements representing bending 
action. Same structure as Fold .

Bdry N r  × 2 List of all boundary edges. Each row contains the indices of 
a pair of nodes. (Intermediate variable)

Bars N b  × 2
List of all bars (edges in the triangulation). Each row 
contains the indices of a pair of nodes. N b =N f +N d +N r .
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the two adjacent triangles, completing a rotational spring element. Examining the nodes of triangles m 
and n by their indices, the two shared nodes identify the rotation axis, i.e. a bending line or folding 
line. If we avoid rotational spring elements that are already marked for bending action, we are left with 
only the elements for folding simulation.  

The bar elements in the simplified model are the edges in the triangulation. The first two columns of 
the Fold and Bend variables, i.e., the folding lines and bending lines, defines all the internal bars. To 
complete the list of all bars, those that lies on the boundaries of the sheet need to be identified. 
Splitting all the triangles to edges (pairs of nodes) and collecting them together, the edges that only 
appear once are the boundary edges, because an internal edge must appear twice as it is shared by two 
triangles. These boundary edges are collected in the variable Bdry, as a two-column matrix containing 
indices of nodes (see Table. 1). Eventually, combining the first two columns of Fold and Bend and the 
entire Bdry, we can obtain the variable Bars. 

 

Figure 2: A sample origami pattern with 5 panels and 10 nodes. (a) The origami pattern. (b) The corresponding 
bar-and-hinge model, where the solid lines are folding lines and boundary edges, and the dashed lines are 

bending lines. All lines represent pin-jointed bars. 

A simple example is provided in Figure 2. There are 5 panels in this origami pattern. It results in 4 
bending lines, 5 folding lines, and 9 boundary edges. After triangulation, the variables Fold, Bend and 
Bdry are detailed in Eq. (3), (4) and (5). Eventually, there are 18 bars and 9 rotational spring elements 
in the corresponding bar-and-hinge model.  

 

1 5 2 4
2 6 3 5
6 9 5 10
5 8 4 9

 
 =  
  

Bend   (10) 

 

2 5 1 6
4 5 1 8
4 8 5 7
5 9 6 8
5 6 2 9

 
 

=  
 
  

Fold   (11) 

 
T1 2 3 6 9 8 7 4 1

2 3 6 10 10 9 8 7 4
 =   

Bdry   (12) 

3.3. Constitutive relationship definition 
Nonlinear constitutive relationships are assigned to both the bars and rotational springs. The two 
functions “BarConst” and “RotConst” specify the relationships.  

The function “BarConst” takes the one dimensional Green-Lagrange strain Ex of bars as input. The 
outputs are the 2nd Piola-Kirchhoff stress Sx, the tangent modulus C, and the stored energy density W. 
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The formulas describing the relationship between these quantities can be found in Wriggers [15], 
which are also hinted in Eq. (5). The current implementation provides a two-term Ogden model 
(Ogden [7]), which is a model for hyperelastic materials that offers rich tunability. The expression for 
the stress-train relationship is: 

 ( ) ( )1 22 2
0

1 2

2 1 2 1x x x
C

S E E
α α

α α

− − = + − +  −
  

The tunable parameters are the initial modulus C0, and the other two material constants α1 and α2. The 
initial modulus describes how stiff the bars are when undeformed. Typically, we assign the bars a 
relatively stiff behavior so that they will only undergo small deformations, because based on 
observation, in general, the creases in real origami structures do not shrink or stretch significantly. 
However, the nonlinear material assumption leaves broad possibility for future development. 

The function “RotConst” specifies the rotational stiffness at the folding lines and bending lines, which 
is also nonlinear. In the current implementation, the rotational springs for folding and bending actions 
are described by the same constitutive model with different parameters. The model describes a piece-
wise behavior for the rotational springs. The formula for the moment-angle relationship is given as 
follows: 

 

0 1 1
0 1 0 1

0 1 2

0 2 2
0 2 0 2

2

2 ( )
( ) tan ,                0

2
( ),                                                        

2 (2 ) ( )
( ) tan ,    

4 2

k
k

M k
k

k

θ π θ θ
θ θ θ θ

π θ
θ θ θ θ θ

π θ π θ θ
θ θ θ θ π

π π θ

 − − + < <  
 = − ≤ ≤

  − −
 − + < < −  

  

This model is an extension of the linear stiffness model for rotations (Schenk and Guest [9]). The 
excessive moment near 0 and 2π, will prevent local penetration of the two jointed panels. The fold (or 
panel) is flat when θ = π. The tunable parameters of this model are the linear rotational stiffness k0. 
The role of parameters θ1 and θ2 is to create a smooth ramp as the stiffness becomes infinitely large. 
When θ is between θ1 and θ2, the behavior is linear. The linear rotational stiffness k0 distinguishes the 
folding and bending actions. We assign k0 = kb for the rotational spring elements of bending (kfacet in 
Schenk and Guest [9]), and k0 = kf for folding (kfold in Schenk and Guest [9]). One can also define their 
own constitutive relationships by changing the formulas in the two functions.    

3.4. Nonlinear solution scheme 
The nonlinear equilibrium problem defined in Eq. (2) is solved by the algorithm called Modified 
Generalized Displacement Control Method (MGDCM) proposed by Leon et al. [6]. The method is 
essentially an arc-length type method, following an incremental-iterative manner. Compared to other 
types of nonlinear solver, for example, the popular Newton-Raphson method, arc-length methods 
allow us to track the whole equilibrium path of the system even with large nonlinearities.  

Denote the load factor as λ, and the prescribed initial load factor as λ∆ . The algorithm is summarized 
as follows: 

1. Initialization: 0
0 =u 0  and 0

0λ = 0  

2. Start increments i: 1i i= + , 1
0
i i

k
−=u u , and 1

0
i i

kλ λ −=  

3. Start iterations k: 0k =  

4. 
Compute internal forces, tangent stiffness matrix and residual vector: 

1 1( )i i
k k− −=T T u , 1 1( )i i

k k− −=K K u , 1 1 1
i i i
k k kλ− − −= −R F T   
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5. Solve linearized systems: 1 ˆi i
k k− ∆ =K u F , 1 1

i i i
k k k− −∆ =K u R  

6. Determine increments: 

1 1
1
1 1
1

1/21 1
1 1 1

1 1 1
1 1

1

1

,    1, 1
ˆ

,    1, 1
ˆ ˆ

ˆ
ˆ ˆsgn( ) ,    1, 1

ˆ ˆ
ˆ

,    1, 1
ˆ ˆ

k

k
i
k i i

i i

i i
k

i i
k

i k

i k

i k

i k

λ

λ
λ−

−

∆ = =
 ∆ ⋅∆− = >
 ∆ ⋅∆
∆ = ∆ ⋅∆

∆ ⋅∆ ⋅∆ > = ∆ ⋅∆
∆ ⋅∆

− > > ∆ ⋅∆

u u
u u

u uu u
u u

u u
u u







  

7. Update: ˆi i i
k k kλ∆ = ∆ ∆ + ∆u u u   

8. 
Convergence test: (1) If i

k tol∆ ≤u (typically, tol = 10-6), stop iteration, and go to 2. 
                              (2) Otherwise, 1k k= + , and go to 4. 

3.5. Output data management 
The primary outputs are the loading history and nodal displacement history, which contains the 
information about the equilibrium path of the structural system. In addition, other pieces of 
information about the folding angles, bending amplitudes (angles), and bar elongations/shrinkage are 
also collected, as listed in Table 2. These variables essentially allow recovery of all information 
involved in the simulation, for example, we can compute the strain energy distribution due to folding, 
bending and stretching of the panels along its deformation history. Visualization is also provided 
within the tool to show the animation of the simulation, which also provides functions to record the 
animations to videos or GIF images.  

Table 2: Output variables 

 

4. Example - Bending of the Eggbox origami 
Using the proposed approach, we are able to numerically analyze various behaviors of origami 
structures. In this example, we are going to investigate the bending of the Eggbox sheet, which is a 
non-developable but two-way flat foldable origami structure, as shown in Figure 3(a). Based on rigid 
origami assumption, the Eggbox has only one degree of freedom, i.e., the folding mechanisms, 
categorized as planar kinematics. However, in reality, it can also undergo out-of-plane kinematics 
because the quadrilateral facets do not remain planar during global deformation. It is interesting that 
when subject to out-of-plane global deformations the Eggbox sheet exhibits a spherical deformation 
mode (Schenk [10]), as shown in Figure 3. The coupling ratio of the two principle curvatures of the 
deformed Eggbox sheet, was only studied for small global deformations numerically in Schenk [10]. 

Variable Name Size Description

U_his N dof  × N icr

History of nodal displacements. N icr  denotes the number of 
increments, which is prescribed. N dof  refers to the number of 
degrees of freedom, which equals to 3 times the number of 
nodes.

LF_his 1 × N icr Variation history of the load factor. 
ExBar N b  × N icr Green-Lagrange strain of bar elements.

FdAngle N f  × N icr Abosulte folding angles (dihedral angles).
BdAngle N d  × N icr Bending amplitudes measured in dihedral angles.
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Utilizing the ability of the proposed tool, we can investigate large global bending behavior of the 
Eggbox sheet.  

The boundary conditions are illustrated in Figure 3, reproducing the situation as in Figure 3(b). Forces 
are applied with a unit magnitude, and the load factor reflects the magnitude of forces. The 
constitutive relationships are characterized by the parameters: C0 = 108, α1 = 5, α2 = 1, kf  = 0.1, kb = 2, 
θ1 = π/8 and θ2 = 15π/8. The cross-sectional areas of bars are assumed to be 10-5. 

 
Figure 3: Eggbox origami (unit cells placed in a 5×5 pattern). (a) Paper model. (b) Bending of the Eggbox sheet.  

 

 
Figure 4: Numerical simulation setups and boundary conditions. (a) Red triangles indicate pin supports, detailed 

in Eq. (13). Blue circles show where the external forces are applied. The forces are applied vertically to the 
negative z-direction, as illustrated by the red arrows. The angle γ = 90̊ describes the initial configuration. (b) A 
flattened unit cell of the Eggbox sheet, where a = b = 0.02, α = 60̊. (c) A side view of the boundary conditions. 
Clearly, the structure is subject to bending. (d) The deformed shape of the origami sheet by numerical analysis. 
Points A, B, C are used to calculate the curvature κ1 (A, D, F for κ2), by fitting the three points to a circle and 

taking the reciprocal of the radius. 

 
1 1 1 1
2 1 0 1
3 0 1 1
4 0 0 1

S
S
S
S

 
 

=  
 
 

Supp   (13) 

The number of increments are specified to be 200 and the prescribed initial load factor λ∆  is set to be 
0.03. The simulation result is presented in Figure 4(b). The bending creates a (distorted) spherical 
shape for the Eggbox sheet, similar to the configuration as suggested by the physical model (see 
Figure 3). The analysis of data is shown in Figure 5. One intermediate state (State (1)) and the final 
state (State (2)) of the deformation are plotted. The coupling ratio of the two principle curvatures at 
the two states are 1.019 and 1.090. Both are positive and around 1.0, which is the prediction from the 
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linear analysis (Schenk [10]). As the global deformation become large, the linear analysis based on 
infinitesimal deformation assumption is no longer valid. We also plot the stored energy distribution at 
these two states. As we can see, the bending deformation of panels is occupying the majority of the 
total stored energy in the (elastic) system. The energy stored in folding deformation increases its 
percentage as the forces become large. 

 
Figure 5: Simulation result. The diagram shows the load (factor) vs. displacement curve. The displacement is 

measured as the z-displacement of node A as marked in Figure 4. The occurrences of state (1) and state (2) are 
marked with black diamonds in the diagram. The corresponding deformations (each from two views) are shown 
on the right. The coupling ratio of curvatures and distribution of stored energy are also provided. The energy of 

panel stretching (and shearing) is represented by the shrinkage and elongation of bars. 

5. Conclusion 
The bar-and-hinge model, as a simplified model, provides insight into the essential global mechanical 
behavior of origami structures. The previously established linear formulation (Schenk and Guest [9]) 
has gained some popularity in the research field of origami engineering (Fuchi et al. [5]). The present 
work and implementation, extends the simplified model to a new nonlinear paradigm that handles 
large displacements and large deformations. This leads to a simple and efficient approach for 
understanding the mechanics of large global deformations of origami structures, which is the most 
attractive property of origami to many engineering applications.   

The MERLIN MATLAB implementation is provided in reference [17] to encourage both research and 
education in the field by providing an easy-to-use access to the nonlinear mechanics of origami 
structures. The code was created with a balance of performance and readability in mind and the 
analysis procedure is maximally automated with minimized input information.       
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