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A B S T R A C T

Many applications demand tunable structural responses through tailored organic microstructural
distributions and spatially varied material properties. Notable progress has been made in
discovering optimized designs using periodic material patterns and fixed material phases to
achieve unusual structural responses. To enable the capability of exploring non-periodic material
architectures with continuous material phase design space, we propose a topology optimization
methodology that leverages a virtual growth rule for designing unique multiscale structures
with tunable responses and irregular architectures, while naturally ensuring manufacturability.
Our approach exploits the virtual growth algorithm to create a material database, delineating
constitutive relations between the homogeneous frequency hints of building blocks responsible
for generating microstructures and the resultant homogenized microstructural elasticity tensors.
We then employ a neural network to yield a continuous and differentiable constitutive relation.
Subsequently, a topology optimization framework is introduced to optimize both the macroscale
material layout and the local frequency hints for building block distribution. Finally, we
generalize the virtual growth algorithm to account for optimized heterogeneous frequency
hints and grow irregular yet optimized structures at the microscale. We present four examples
to showcase our proposed approach in programming several types of responses, including
displacement cloaking, tunable strain energy density, and global structural stiffness, in both
two and three dimensions. The optimized multiscale structures, characterized by their stochastic
and irregular architectures, demonstrate programmed responses that closely match the desired
targets. These structures also ensure microstructural connectivity and offer the flexibility to
select building blocks with guaranteed minimal features. Consequently, we leverage such
connectivity and minimal features to manifest the manufacturability of the optimized structures
by 3D printing. Our proposed computational strategy, which precisely realizes programmed
structural responses in multiscale structures with irregular architectures and facilitates manu-
facturing feasibility, can be beneficial for applications that prioritize structures exemplifying
disorderedness, non-uniformity, and heterogeneity.
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1. Introduction

Tunable structural responses are useful in numerous fields, including electromagnetics [1,2], bioengineering [3,4], optics [5],
nd mechanical engineering [6,7]. In the field of mechanical engineering, researchers have successfully achieved a wide array of
nconventional structural responses [8–12] through various approaches. To achieve certain intricate yet desired structural responses,
t calls for complex structural geometries and/or the tailored distribution of material properties [13–17].

To discover the structural geometries and material property distributions for achieving desired structural responses, topology
ptimization [18,19] is a robust computational approach employed among various design methods. Classical topology optimiza-
ion [20,21] focuses on maximizing a structural performance of interest while adhering to specific constraints to determine the
ptimal material layout. Over time, this computational approach has been implemented for programming complex structural
ehaviors within the multi-physics contexts. These intricate behaviors often encompass nonlinearities, anisotropies, and multistabil-
ties, which demand synergistic utilization of multiple materials. In order to optimize the distribution of these multiple materials,
he field of multi-material topology optimization [22–27] has seen significant advancements in recent years. Such an approach
oncurrently optimizes both the topological layout and material phases, and the latter encompasses various aspects, including
aterial types [16,28], fiber directions in composites [29], magnetic orientations in soft materials [30], and more. The optimized

tructures resulting from this approach possess a finite number of discrete material phases with well-defined boundaries [14,30].
Featuring a continuous and enlarged design space of material phases, topology optimization of multiscale structures (see [31]

or a comprehensive review) has also garnered increasing attention in recent years. In this approach, the microscale typically
omprises a single isotropic material phase (constituent or base material), while diverse macroscale effective material properties
re achieved through an array of unit cells with varying topology and/or geometries. The topology optimization of multiscale
tructures can be broadly categorized into full-scale and multiscale methods, and the latter explicitly assumes the separation of length
cales [31]. The full-scale method, exemplified by single-scale topology optimization for stiffness maximization [20], is conducted
n a fine mesh, naturally resulting in multiscale structures due to the necessity for optimal structures to span multiple scales [31].
lternatively, full-scale methods can be implemented through local control strategies such as pattern repetition [32–34] and local
olume constraints [24,35]. The former enforces subdomain repetition, while the latter imposes an upper bound on volume fraction
n nearby regions for each material point in the design domain. These full-scale methods generate multiscale structures with unit
ells naturally connected to their neighbors, but the computational cost can be high due to direct structural analysis at a fine scale.

To mitigate the computational cost in designing multiscale structures, multiscale methods have gained popularity. This approach
ecouples the topology optimization problem into two subproblems: one macroscale subproblem for determining the distribution
f effective material properties to achieve desired structural responses, and one microscale subproblem for designing unit cells to
ttain the desired effective material properties. This decoupling allows the macroscale subproblem to be solved on a coarse mesh,
educing computational costs compared to the full-scale method. As for the microscale subproblem, it is bridged to the macroscale
sing homogenization theory [36,37], linking microscale topology and/or geometries of unit cells to macroscale effective material
roperties. Implementing the multiscale method can be achieved through hierarchical formulations [38–45] that solve the two
ubproblems either concurrently or sequentially, allowing for the design of free-form multiscale structures.

For enhanced manufacturability, recent advancements in multi-scale methods have focused on leveraging predefined primitive
nit cells such as trusses, spinodals, gyroids, and ranked laminates. These unit cells can either remain unchanged [46] or be
arameterized with geometric parameters (e.g., thickness of members) [47–55] and/or transformation parameters (e.g., rotation and
longation) [56–63]. Following the specification of primitive unit cells, the next step involves relating unit cell parameters to their
ffective properties through analytical or numerical homogenization. The latter is often accompanied by fitting functions or machine
earning techniques to create a continuous and differentiable surrogate model [15,64–67]. The macroscale subproblem is then solved
ased on the derived relationships to find the desired unit cell parameters. Subsequently, these optimized unit cell parameters are
sed to construct the multiscale structures, with de-homogenization techniques [58,61,68] potentially involved for certain primitive
nit cells such as ranked laminates. Ensuring good connectivity between neighboring unit cells poses a challenge during construction.
ne approach is to restrict the topology of primitive unit cells, such as adding a bounding box, to ensure they can always be
onnected to their neighbors. Alternatively, connectivity issues can be successfully addressed through additional constraints or
onsiderations, including pseudo-load [47], unified formulations with non-linear diffusion [47], geometric interpolation between
ptimized unit cells [69], connectivity index [70], optimization of extended domain covering adjacent cells [51], etc.

Despite notable advances in existing studies, our work introduces a novel topology optimization framework (Fig. 1) aimed
t engineering irregular (non-periodic) multiscale structures with controllable responses. In comparison to existing studies, our
roposed framework seeks to achieve several objectives simultaneously. First, leveraging the versatile virtual growth algorithm [71]
nsures local connections between neighboring unit cells without relying on additional constraints, thus avoiding limitations
n achievable effective material properties. Second, our framework yields stochastic and highly aperiodic multiscale structures,
hich may exhibit enhanced failure resistance [55,72] and may be preferable in certain scenarios due to aesthetic considerations

ompared to deterministic structures. Third, while most of the existing work in mechanical engineering focuses on global compliance
inimization, we aim to program three representative types of structural responses — node-wise mechanical displacement cloaking,

lement-wise strain energy density distribution, and global maximized structural stiffness (Fig. 1(b)). Finally, our proposed
ramework generates structures with a uniform and explicitly controllable microscale feature size that promotes manufacturability.

To achieve these objectives, we employ our proposed methodology to design the material layout and property distribution as
hown in Fig. 1(c)–(d). During the optimization of the property distribution, rather than directly specifying microstructures (as in
2

lassical multiscale topology optimization), our approach starts with a finite set of building blocks capable of forming seamless



Computer Methods in Applied Mechanics and Engineering 425 (2024) 116864Y. Jia et al.
Fig. 1. Illustration of the proposed topology optimization methodology using a virtual growth rule. (a) The design domain, comprising macro-elements and
subjected to applied displacement loading (𝑢) and traction loading (𝑡). (b) Objectives in this study: achieving mechanical displacement cloaking, programming
strain energy density distribution, and maximizing overall structural stiffness. Here, 𝑊𝑒 represents the strain energy density of macro-element 𝑒, 𝑛 denotes control
macro-elements, and 𝐹 is the resultant reaction force. (c) Topology optimization for macroscale material layout and building block distribution, determined by
building block types and their frequency hints. (d) Virtual growth algorithm used to generate irregular multiscale structures following optimized material layout
and building block distribution. (e) A 3D printed optimized design (see details in Section 4.4) generated by the proposed methodology.

microstructures based on prescribed frequency hints. Here, the frequency hint of a building block is a scalar field variable, defined
as the desired probability of the building block appearing at a material point. We then sample varying frequency hints and utilize
the virtual growth scheme to create the corresponding microstructures. Consequently, we construct a material database specifying
the constitutive relationship between the microstructural property and the frequency hints of building blocks. We optimize the
property configuration by distributing these building blocks through controlling their frequency hints at different locations. Based
on the optimized material layout and building block distribution, we employ the extended virtual growth algorithm to generate
optimized irregular multiscale structures at the microscale (Fig. 1(d)). Owing to the extended virtual growth algorithm, the generated
multiscale structures exhibit stochastic, self-sustaining ensembles, seamlessly integrating both within and between macro-elements.
Furthermore, these self-sustaining ensembles are constructed from given building blocks, carefully selected to meet the minimum
feature size required for fabrication. This inherent self-supporting characteristic, combined with the established minimum feature
size, significantly enhances the feasibility of manufacturing these optimized structures using 3D printing, as shown in Fig. 1(e).

The remainder of this paper is organized as follows. Section 2 briefly reviews the classical virtual growth algorithm presented
in [71], providing readers with a convenient overview. We then introduce its extended version, one of the four interconnected
components of our proposed methodology. Section 3 presents the other three components: the creation of a discrete material
database, training of a neural network, and topology optimization. In Section 4, we employ four examples to demonstrate the
tunable responses facilitated by our methodology and extend the discussion to the three-dimensional (3D) case. Finally, in Section 5,
we offer several concluding remarks. The paper also includes four appendices. Appendix A introduces the normalization projection
scheme used in topology optimization to enforce the equality constraint for the frequency hints with non-trivial bounds. Appendix B
details the sensitivity analysis and its verification as part of topology optimization in our proposed methodology. Appendix C
complements the first example by considering rounded void and designable regions. Lastly, Appendix D presents the proposed
two-grid projection scheme, which enables topology optimization on an unstructured grid while implementing the virtual growth
algorithm on a structured grid.

2. Classical and extended virtual growth algorithms

The virtual growth algorithm constitutes one of the pivotal components of our proposed topology optimization methodology. This
section provides a concise overview of the classical virtual growth algorithm as presented in [71], ensuring the reader’s familiarity
3
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Fig. 2. Illustration of the classical virtual growth algorithm. (a) Prescribing building blocks. (b) Creating adjacent rules for each pair of building block variations.
(c) The virtual growth process. The numbers shown in the figure represent cell entropies calculated using Eq. (3). The variable 𝑃

𝚟𝚊𝚛
denotes the normalized

probability of selecting a specific building block variation.

with its foundations. Subsequently, we introduce the extended version of this algorithm, which serves as the primary method
employed in this work.

2.1. Classical virtual growth algorithm

The virtual growth algorithm, as introduced in [71], is a pioneering graphical theory for generating irregular and stochastic
architected patterns. This process relies on a set of adjacent rules applied to a limited number of building blocks. In Fig. 2(a), we
4
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initiate the process by specifying 𝑀𝚋𝚕𝚘𝚌𝚔 (𝑀𝚋𝚕𝚘𝚌𝚔 ≥ 1) simple building blocks. These building blocks are only required to be capable
f connecting through specific rotational configurations. For our illustration, we consider 𝑀𝚋𝚕𝚘𝚌𝚔 = 4 types of two-dimensional (2D)

building blocks: cross, rhombus, arrow, and corner, with each block rotated at 90, 180, and 270 degrees to yield unique
variations. Subsequently, we derive binary representations for these variations, each represented by a 3 × 3 matrix where each
element is either 0 (void) or 1 (solid).

To determine whether two building block variations can be adjacent (Fig. 2(b)), we establish a condition: two variations can be
adjacent if and only if they are either fully connected or fully detached, with no dangling parts. This condition can be automatically
checked using their binary representations. Let 𝐋3×3 and 𝐑3×3 denote the binary representations of a given left and right building
lock variation, respectively. The two variations can be adjacent if and only if ‖𝐿∗3 − 𝑅∗1‖2 = 0, where 𝐿∗3 represents the third

column of 𝐋, and 𝑅∗1 represents the first column of 𝐑. By examining all pairs of building block variations, we construct an adjacency
table that specifies all right building block variations that can be adjacent to a given left building block variation.

With the adjacent table in hand, we can now initiate the virtual growth process (Fig. 2(c)). Our objective is to populate a given
empty grid with prescribed building blocks, adhering to both the adjacent rules and the desired frequency hints. We achieve this
target iteratively as follows: In each iteration, we traverse all cells of the grid, determining the building block variations present
in neighboring cells. We compute the admissible building block variations for the current cell (𝚟𝚊𝚛) based on the adjacency table
(Fig. 2(b)). Subsequently, we calculate the normalized probability (𝑃

𝚟𝚊𝚛

𝑖 ) of selecting the 𝑖th type of admissible building block
ariation as

𝑃
𝚟𝚊𝚛

𝑖 =
𝑃 𝚟𝚊𝚛
𝑖

∑

𝑗∈𝚟𝚊𝚛 𝑃 𝚟𝚊𝚛
𝑗

(1)

where 𝑃 𝚟𝚊𝚛
𝑖 is the probability distribution of the 𝑖th type of building block variation in a given cell and computed as

𝜉
𝚟𝚊𝚛

𝑖 =
𝑁𝚟𝚊𝚛

𝑖 +
(

𝑁𝚌𝚎𝚕𝚕 −
∑𝑀𝚟𝚊𝚛

𝑗=1 𝑁𝚟𝚊𝚛
𝑗

)

𝑃 𝚟𝚊𝚛
𝑖

𝑁𝚌𝚎𝚕𝚕
⇒ 𝑃 𝚟𝚊𝚛

𝑖 =
𝜉
𝚟𝚊𝚛

𝑖 𝑁𝚌𝚎𝚕𝚕 −𝑁𝚟𝚊𝚛
𝑖

𝑁𝚌𝚎𝚕𝚕 −
∑𝑀𝚟𝚊𝚛

𝑗=1 𝑁𝚟𝚊𝚛
𝑗

, (2)

where 𝜉
𝚟𝚊𝚛

𝑖 = 𝜉∕𝑀𝚞 is the desired frequency distribution of the 𝑖th type of building block variation, and 𝜉 denotes the prescribed
requency distribution of the corresponding original building block. The symbol 𝑀𝚞 stands for the number of unique variation types
f the corresponding building block. The symbol 𝑀𝚟𝚊𝚛 is the number of unique variation types of all building blocks. The parameter
𝚌𝚎𝚕𝚕 corresponds to the number of cells in the grid, and 𝑁𝚟𝚊𝚛

𝑖 represents the number of filled building block variations of type 𝑖.
Next, we compute the cell entropy as

𝑆 =
∑

𝑖∈𝚟𝚊𝚛

−𝑃
𝚟𝚊𝚛

𝑖 log𝑃
𝚟𝚊𝚛

𝑖 (3)

and select the target cell with the lowest entropy. After identifying the target cell, we randomly insert one admissible building block
variation based on the normalized probability distribution, 𝑃

𝚟𝚊𝚛

𝑖 for 𝑖 ∈ 𝚟𝚊𝚛. This process repeats until all cells are filled, resulting
n the generation of an irregular architected pattern. Such a virtual growth process is valuable for creating irregular and stochastic
rchitected mechanical materials, providing precise control over properties via the input frequency hints of building blocks (for
dditional details, see Section 3.1 and [71]).

.2. Extented virtual growth algorithm for heterogeneous frequency hints

While the classical virtual growth algorithm described in [71] primarily focuses on a single set of intuition-based frequency hints,
his section introduces an extension to accommodate multiple/heterogeneous optimization-guided frequency hints. This extended
ersion also permits the inclusion of passive solid and void regions within the final design. For instance, as illustrated in Fig. 1(d),
e present a grid featuring four macro-elements with distinct prescribed frequency hints. Notably, the top-right macro-element is
esignated as a passive void region, where no building blocks are allowed. The design created through the extended virtual growth
lgorithm effortlessly fulfills these conditions. Compared to the classical virtual growth algorithm, the extended version also brings
otable improvements in enhancing computational efficiency, promoting a higher likelihood of finding a feasible solution, and
liminating global disconnection as follows.

First, note that the existence of a solution to the virtual growth problem discussed herein cannot be guaranteed. However, given
he stochastic nature of this virtual growth problem, we can employ a strategy of multiple algorithm retries until a feasible solution
s obtained. In the classical version, each retry begins anew, incurring a potentially high computational cost, especially when dealing
ith a large number of cells to fill, as is the case in the problems addressed in this study. In contrast, the extended version of the
lgorithm introduces an innovative approach. It retains the information regarding filled building blocks and allows for the reversion
o a specific iteration in cases where no solution is found. Leveraging the inherent stochasticity of the algorithm, this approach
llows us to restart the algorithm from the chosen iteration, significantly reducing computational costs.

Second, during each iteration, the classical algorithm extensively traverses all unfilled cells to compute entropies, which is a
ime-consuming process. To mitigate computational costs, we have optimized this step by exclusively calculating the entropies of
ront cells. These front cells, defined as unfilled cells with at least one filled neighboring cell, consistently offer fewer choices for
dmissible building blocks, resulting in lower entropies when compared to cells at a distance. See a detailed procedure in Algorithm
5

.
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Finally, the extended algorithm leverages the PyVista package [73] to verify global connectivity, mitigating the occasional
ccurrence of global disconnection. While virtual growth inherently ensures local integration between neighboring building blocks,
here are instances where these blocks might inadvertently create a self-enclosed section detached from the main structure. By
ntroducing global connectivity checks, we ensure the structural integrity of the entire design.

Algorithms 2–3 provide a comprehensive breakdown of the preparation and iteration phases of the extended virtual growth
lgorithm. To implement this algorithm, we have developed an in-house Python code [74]. This code is specifically designed
o optimize computational efficiency by converting certain while-loops and for-loops into matrix and vector operations. Detailed
omputational time is reported in Section 4.

Algorithm 1: Identifying the front cells and computing their entropies
1 Inputs: iteration counter, 𝑛iter; the number of all cells, 𝑁cell; the set of designable cells, cell; probability matrix, 𝐏var

with 𝑃 var
𝑖𝑗 representing the probability of the building block variation of type 𝑗 to be chosen in macro-element 𝑖;

2 if 𝑛iter = 1 then
3 Let cell ← cell be the set of front cells;
4 else
5 Initialize the set of front cells, cell ← ∅;
6 for cell ∈ cell do
7 Find all neighboring cells of the current cell;
8 if cell is unfilled and at least one neighboring cell is filled then
9 cell ← cell ∪ {𝑛cell};
10 end
11 end
12 end
13 for cell ∈ cell do
14 Find all building block variations filled in neighboring cells if any;
15 According to the adjacent table in Fig. 2(b), find the adjacency building block variations of neighboring building block

variations and then take their intersection as the admissible building block variations of the current cell;
16 if no admissible building block variations exist then
17 Break the algorithm;
18 end
19 Find the corresponding macro-element of the current cell and then the normalized probabilities of the admissible

building block variations of the current cell based on 𝐏var and Eq. (1);
20 Use Eq. (3) to compute the current cell’s entropy (𝑆).
21 end

3. Proposed virtual-growth-based topology optimization

This section introduces the proposed topology optimization methodology, utilizing the extended virtual growth algorithm
utlined in Algorithms 2–3. The methodology consists of four interconnected components: the creation of a discrete material
atabase, training of a neural network model, topology optimization, and the virtual growth of structures. In the previous section,
e introduced the virtual growth algorithm. The remaining three components will be discussed in the following subsections.

.1. Creation of a discrete material database

To facilitate subsequent topology optimization, it is imperative to establish the constitutive relationship between the frequency
ints of building blocks, denoted as {𝜉1, 𝜉2, 𝜉3, 𝜉4}, and the effective (homogenized) elasticity tensor of the generated material

(microstructure), represented as C. This task is accomplished through a discrete material database, which is detailed in Fig. 3(a).
nitially, we prescribe four building blocks for both 2D and 3D cases, adhering to the descriptions provided in [71]. The selected
uilding blocks should represent different connectivities. For example, in the 2D case, the cross building block can be connected

from all four directions while the arrow building block can only be connected from three directions. In addition, the selected
building blocks should yield microstructures that cover a relatively large material property space as shown in Fig. 3(b) such that
the desired macroscopic structural responses can be achieved.

Upon prescribing the building blocks, we then perform uniform sampling of frequency hints on the hyperplane defined by
𝜉1 + 𝜉2 + 𝜉3 + 𝜉4 = 1. This process yields 800 data points for the 2D case and 200 data points for the 3D case. With these
ampled frequency hints, we utilize the classical virtual growth algorithm detailed in Section 2.1 to generate architected materials.
pecifically, we create square materials consisting of 40 × 40 building blocks for the 2D case and cubic materials with 10 × 10 × 10
6
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Algorithm 2: Extended virtual growth algorithm — preparation phase
1 Inputs: the number of macro-elements of the input grid, 𝑁elem; the number of building block types, 𝑀block; the frequency

hint matrix, 𝐅𝑁elem×𝑀block with 𝐹𝑖𝑗 representing the prescribed frequency distribution of the 𝑗-th type of building block in
macro-element 𝑖; the set of all passive solid macro-elements, elem; the set of all passive void macro-elements, elem;

2 Initialize the building block type counter, 𝑚block ← 1; the vector of building block variation counters, 𝐦var ← 𝟎;
3 while 𝑚block ≤ 𝑀block do
4 Find unique variations of the 𝑚block-th type of building block;
5 Store the number of unique variations in 𝑚var

𝑚block
;

6 𝑚block ← 𝑚block + 1;
7 end
8 Compute the total number of all unique building block variations, 𝑀var =

∑𝑀block

𝑚block=1 𝑚
var
𝑚block

;
9 Initialize the augmented frequency hint matrix, 𝐅̂𝑁elem×𝑀var ← 𝐎, with 𝐹𝑖𝑗 representing the frequency distribution of the

𝑗-th type of building block variation in macro-element 𝑖; the building block type counter, 𝑚block ← 1; matrix column
counter, 𝑛col ← 1; end column indicator, 𝑁col ← 0;

10 while 𝑚block ≤ 𝑀block do
11 𝑁col ← 𝑁col + 𝑚var

𝑚block
;

12 while 𝑛col ≤ 𝑁col do
13 𝐹∗𝑛col ← 𝐹∗𝑚block∕𝑚

var
𝑚block

;
14 𝑛col ← 𝑛col + 1;
15 end
16 𝑚block ← 𝑚block + 1;
17 end
18 Set each cell with the same solid, void, and designable attribute as the macro-element that the cell resides in;
19 Figure out the set of all cells in the grid, cell; all passive solid cells, cell; all passive void cells, cell;
20 Let cell = cell ∪ cell denote all passive cells and cell = cell ⧵ cell be the designable cells.
21 Compute the number of all cells as 𝑁cell = 𝑛(cell) and the number of cells to be filled as 𝑁fill = 𝑛(cell), where 𝑛(⋅)

represents the cardinal number of a set.

building blocks for the 3D case. For each set of frequency hints, we generate 100 samples, resulting in a total of 80,000 2D materials
and 20,000 3D materials.

Upon generating the architected materials, we proceed to evaluate their effective elasticity tensors, denoted as C, utilizing
homogenization techniques [36]. For the sake of clarity and consistency, we adopt the numerical homogenization approach outlined
in [37]. This approach requires the global stiffness matrix of the material as input, which we compute via the finite element analysis
(FEA) [75]. Specifically, for the 2D case, we employ the first-order quadrilateral Lagrange element and make use of the plane stress
assumption. In the 3D case, we opt for frame elements to enhance computational efficiency. Following the numerical homogenization
process, we calculate the average elasticity tensor over 100 samples for each set of frequency hints. Consequently, we compile a
discrete material database that comprises 800 frequency–elasticity pairs for the 2D case and 200 pairs for the 3D case.

The compiled material database encompasses a broad spectrum of material properties by utilizing predefined building blocks
and sampled frequency hints. In Fig. 3(b) and (c), we depict the 2D and 3D material properties in the 𝐸𝚊𝚟𝚎∕𝐸𝚜𝚘𝚕𝚒𝚍–𝜈𝚊𝚟𝚎 space,
respectively, following the convention in [71]. Here, the variable 𝐸𝚜𝚘𝚕𝚒𝚍 = 1163 MPa represents the Young’s modulus of the
constituent solid material. The variables 𝐸𝚊𝚟𝚎 and 𝜈𝚊𝚟𝚎 denote the effective Young’s modulus and Poisson’s ratio defined as

𝐸𝚊𝚟𝚎 = 1
2

(

1
S1111

+ 1
S2222

)

, 𝜈𝚊𝚟𝚎 = −1
2

(

S2211
S1111

+
S1122
S2222

)

in 2D and

𝐸𝚊𝚟𝚎 = 1
3

(

1
S1111

+ 1
S2222

+ 1
S3333

)

, 𝜈𝚊𝚟𝚎 = −1
6

(

S2211
S1111

+
S1122
S2222

+
S3322
S2222

+
S2233
S3333

+
S3311
S1111

+
S1133
S3333

)

in 3D. Here, S = C−1 represents the fourth-order homogenized compliance tensor.
In Fig. 3(b) and (c), the dots denote data points averaged over 100 samples corresponding to the same set of frequency hints, and

he insets display the frequency hints of several representative data points. The boundary of the shaded area indicates the extreme
alues achieved by the generated samples. Based on Fig. 3(b) and (c), we observe that the selected building blocks yield a broad
aterial property space spanning 𝐸𝚊𝚟𝚎∕𝐸𝚜𝚘𝚕𝚒𝚍 ∈ [0.012, 0.272] and 𝜈𝚊𝚟𝚎 ∈ [−0.541, 0.628] in 2D, as well as 𝐸𝚊𝚟𝚎∕𝐸𝚜𝚘𝚕𝚒𝚍 ∈ [0.003, 0.036]

and 𝜈𝚊𝚟𝚎 ∈ [0.008, 0.144] in 3D. Moreover, the frequency hints significantly influence the achieved material properties. For instance,
in the 2D case, a higher frequency of the cross building block results in larger 𝐸𝚊𝚟𝚎∕𝐸𝚜𝚘𝚕𝚒𝚍 values, while a greater frequency of
the rhombus building blocks enables larger 𝜈𝚊𝚟𝚎 values. These observations stem from the higher tensile/compressive resistance
of the cross building blocks in both horizontal and vertical directions, contrasting with the rhombus building block’s tendency
to exhibit lateral contraction when expanded in the orthogonal direction. Harnessing the extensive range of material properties
provided by the compiled database enables precise control over diverse structural responses, as demonstrated in Section 4.
7
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Algorithm 3: Extended virtual growth algorithm — iteration phase
1 Inputs: the maximum number of trials, 𝑁try; the number of macro-elements of the input grid, 𝑁elem; the total number of

all unique building block variations, 𝑀var; the number of cells to be filled, 𝑁fill; rolling back rate, 𝑟 ∈ (0, 1);
2 Initialize the trial counter, 𝑛try ← 1; the iteration for keeping the histories, 𝑁keep ← 1;
3 while 𝑛try ≤ 𝑁try do
4 Clear the filled building block variations since iteration 𝑁keep;
5 Calculate the matrix for storing the number of filled building block variations, 𝐂var

𝑁elem×𝑀var with 𝐶var
𝑖𝑗 representing the

number of building block variations of type 𝑗 filled in macro-element 𝑖;
6 Initialize the iteration counter, 𝑛iter ← 𝑁keep;
7 while 𝑛iter ≤ 𝑁fill do
8 Based on 𝐂var and Eq. (2), compute the probability matrix, 𝐏var;
9 Deal with non-positive probabilities by setting 𝑃 var

𝑖𝑗 = 10−6 if 𝑃 var
𝑖𝑗 ≤ 0 for 𝑖 = 1, 2, ..., 𝑁elem and 𝑗 = 1, 2, ...,𝑀var;

10 Normalize the probability matrix by setting 𝑃 var
𝑖𝑗 = 𝑃 var

𝑖𝑗 ∕
∑𝑀var

𝑘=1 𝑃 var
𝑖𝑘 for 𝑖 = 1, 2, ..., 𝑁elem and 𝑗 = 1, 2, ...,𝑀var;

11 Identify the set of front cells, cell, and compute their entropies using Algorithm 1;
12 if Algorithm 1 is successful then
13 Let  ← successful be the algorithm indicator;
14 Find the target cell with the lowest entropy;
15 Find the admissible building block variations of the target cell;
16 Compute the normalized probabilities of the admissible building block variations based on 𝐏var and Eq. (1);
17 Randomly select an admissible building block variation based on their normalized probabilities;
18 Fill the selected building block variation into the target cell and update 𝐂var;
19 else
20 Let  ← failed be the algorithm indicator;
21 break;
22 end
23 𝑛iter ← 𝑛iter + 1;
24 end
25 if the algorithm indicator, , is successful then
26 Check the global connectivity of the generated structure with the PyVista package [73];
27 if disconnection exists in the generated structure then
28 𝑁keep ← 1;
29 𝑛try ← 𝑛try + 1;
30 else
31 Break the algorithm because it is successfully finished;
32 end
33 else
34 𝑁keep ← max{1, ⌊𝑛iter × (1 − 𝑟)⌋} where ⌊⋅⌋ represents the greatest integer that is smaller than (⋅);
35 𝑛try ← 𝑛try + 1;
36 end
37 end

3.2. Training of a neural network model to establish the constitutive relationship

The previous material database records discrete relationships between the frequency hints of building blocks and the elasticity
ensors of generated architected materials. However, for the sensitivity analysis in subsequent topology optimization, a continuous
nd differentiable relationship is essential. To capture this intricate relationship, similar to many other data-driven-based methods
uch as [15,64–67], we employ a fully connected neural network, as illustrated in Fig. 4(a). This neural network comprises one
nput layer (I) for the frequency hints (comprising four components, 𝜉1–𝜉4), two hidden layers (H1 and H2) with 𝑚 and 𝑝 nodes,
espectively, and one output layer (O) for 𝑁 independent components of the material’s elasticity tensor (𝐶1–𝐶𝑁 , where 𝑁 = 6 for
he 2D case and 𝑁 = 21 for the 3D case). Between the I and H1 layers, as well as the H1 and H2 layers, we employ the rectified
inear activation unit (ReLU), denoted as ReLU(⋅) = max{⋅, 0}, as a nonlinear activation function. This configuration defines the

mathematical formulation of the neural network as

⎧

⎪

⎨

⎪

I → H1 ∶ 𝜻1 = 𝐖1𝜻 + 𝐛1, 𝐡1 = ReLU(𝜻1)

H1 → H2 ∶ 𝜻2 = 𝐖2𝐡1 + 𝐛2, 𝐡2 = ReLU(𝜻2) (4)
8

⎩
H2 → O ∶ 𝐂 = 𝐖3𝐡2 + 𝐛3
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Fig. 3. Development of a discrete material database. (a) The creation process involves prescribing building blocks, sampling frequency hints, {𝜉1 , 𝜉2 , 𝜉3 , 𝜉4},
on the hyperplane 𝜉1 + 𝜉2 + 𝜉3 + 𝜉4 = 1, using the classical virtual growth algorithm [71] to generate architected materials, and finally employing numerical
homogenization to evaluate the elasticity tensors of these materials. The variable C[𝑑]

𝑖 represents the 𝑖th elasticity tensor in a 𝑑-dimensional space. (b) and (c)
show the 2D and 3D material property space, respectively, which are achieved by the materials generated from the prescribed building blocks. The dots on
the plots symbolize data points averaged over 100 samples associated with the same set of frequency hints, with the color of the dots indicating the respective
frequency hints. Insets provide a visual representation of the frequency combination for selected data points, and the boundary of the shaded area delineates the
extreme values attained by the generated samples. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

where 𝜻 = [𝜉1, 𝜉2, 𝜉3, 𝜉4]⊤ represents the input frequency hints. Intermediate variables during the forward pass of the neural network
are stored in vectors, 𝜻1, 𝜻2, 𝐡1 = [ℎ1,1, ℎ1,2,… , ℎ1,𝑚]⊤, and 𝐡2 = [ℎ2,1, ℎ2,2,… , ℎ2,𝑝]⊤. The weighting matrices, 𝐖1, 𝐖2, and 𝐖3, and
bias vectors, 𝐛1, 𝐛2, and 𝐛3, represent the model parameters to be optimized. The vector 𝐂 stores the independent components of
the material’s elasticity tensor, 𝐶1–𝐶𝑁 .

To optimize the model parameters (𝐖1–𝐖3 and 𝐛1–𝐛3), we employ the mean squared error (MSE) of the independent
components of the elasticity tensor as the loss function, which is denoted as . The goal is to minimize  using the Adam
optimizer [76]. Before embarking on the optimization of model parameters, it is essential to establish reasonable model hy-
perparameters. These hyperparameters include the number of nodes in the two hidden layers (𝑚 and 𝑝) and the learning rate
(𝛼). Setting appropriate hyperparameters promotes faster convergence and improved training performance. To determine these
hyperparameters, we randomly test 100 combinations of hyperparameters, with 𝑚 and 𝑝 ∈ {4, 8, 16, 32, 64, 128, 256, 512} and
𝛼 ∈ {10−5.0, 10−4.5, 10−4.0, 10−3.5, 10−3.0, 10−2.5, 10−2.0}. Each neural network training run encompasses 200 epochs, and we record
the final loss () for each combination. Based on the test results, we determine that the optimal hyperparameters for training the
2D database are 𝑚 = 𝑝 = 256 and 𝛼 = 10−2. For training the 3D database, we find that 𝑚 = 512, 𝑝 = 256, and 𝛼 = 10−2 yield the best
performance.

During formal training, we employ a holdout validation strategy to ensure the neural network’s accuracy and generalizability
(Fig. 4(a)). Specifically, we randomly allocate 800 2D data into two sets: 720 for training and 80 for testing. For the 3D data,
we split the 200 samples into 160 for training and 40 for testing. The neural network undergoes 1000 epochs of training, with
a learning rate schedule: 10−2 for epochs 1–200, 10−3 for epochs 201–500, and finally, 10−4 for epochs 501–1000. The neural
network is implemented and trained using an in-house Python code [74] and the PyTorch package [77]. Fig. 4(b) highlights the
good performance of the neural network through a comparison between the true and predicted values across both the training and
9
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Fig. 4. Neural network diagram for predicting the elasticity tensor based on the input frequency hints. Panel (a) shows a fully connected neural network
containing one input layer (I), two hidden layers (H1 and H2), and one output layer (O). The predicted independent components of the elasticity tensor (𝐶1 to
𝐶𝑁 ) from the output layer are compared with their corresponding ground truth values (𝐶T

1 to 𝐶T
𝑁 ), and the disparity is quantified using the mean squared error

(MSE), denoted as . Additionally, a holdout validation strategy is employed to ensure the neural network’s accuracy and generalizability by partitioning the
data into training and testing sets. Panel (b) highlights the outstanding performance of the neural network by presenting a comparison between the true values
and the predicted values across both the training and testing datasets within the framework of 2D and 3D databases.

testing datasets in the context of 2D and 3D databases. Notably, most data points cluster closely around the reference line, signifying
the neural network’s strong predictive capabilities for the elasticity tensor. Furthermore, based on the test data, the neural network
achieves MSEs of 2.538 MPa in 2D and 0.134 MPa in 3D, significantly smaller than their respective mean values of 62.542 MPa
and 2.687 MPa.

3.3. Topology optimization framework

Based on the trained neural network model, we now introduce the proposed topology optimization framework for designing
irregular multiscale structures with tunable responses. This subsection outlines the proposed topology optimization framework
across three key aspects: design space parameterization, elasticity interpolation, and the mathematical formulation for topology
optimization.

3.3.1. Design space parameterization
Classical topology optimization [20,21] is concerned with determining the optimal material layout (i.e., the presence or absence

of material) to achieve desired performance while adhering to certain constraints. In our work, we extend this concept by optimizing
10
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both the material layout and the distribution of building blocks, as depicted in Fig. 1(c). This extension enables us to create optimized
irregular multiscale structures with tunable responses. To facilitate this optimization, we employ a parametric approach to describe
the design space. This description involves using two distinct sets of continuous, dimensionless field variables: a density field,
𝜌(𝐗) ∈ [0, 1], and multiple frequency fields, 𝜉𝑖(𝐗) ∈ [0, 1] for 𝑖 = 1, 2,… ,𝑀𝚋𝚕𝚘𝚌𝚔. Here, 𝑀𝚋𝚕𝚘𝚌𝚔 represents the number of building
lock types (𝑀𝚋𝚕𝚘𝚌𝚔 = 4 in this work), and 𝐗 signifies the position vector of a material point within the design domain, 𝛺, using a
artesian coordinate system.

To mitigate the infamous checkerboard phenomenon and reduce the dependency of the design variables (𝜌 and 𝜉1–𝜉𝑀𝚋𝚕𝚘𝚌𝚔 ) on
esh size, we apply a linear filter [78] to these design variables. This step results in the filtered density (𝜌(𝐗)) and frequency
𝜉1(𝐗)–𝜉𝑀𝚋𝚕𝚘𝚌𝚔 (𝐗)) fields, which are expressed as

𝜌(𝐗) =
∫𝛺

𝑤𝜌(𝐗,𝐗′)𝜌(𝐗′)d𝐗′

∫𝛺
𝑤𝜌(𝐗,𝐗′)d𝐗′

, 𝜉𝑖(𝐗) =
∫𝛺

𝑤𝜉 (𝐗,𝐗′)𝜉𝑖(𝐗′)d𝐗′

∫𝛺
𝑤𝜉 (𝐗,𝐗′)d𝐗′

for 𝑖 = 1, 2,… ,𝑀𝚋𝚕𝚘𝚌𝚔, (5)

where the parameters 𝑤𝜌(𝐗,𝐗′) = max{0, 𝑅𝜌 − |𝐗 − 𝐗′
|} and 𝑤𝜉 (𝐗,𝐗′) = max{0, 𝑅𝜉 − |𝐗 − 𝐗′

|} are weighting factors, and parameters
𝜌 and 𝑅𝜉 are the prescribed filter radii.

To ensure a 0–1 solution of the density field (𝜌), we further apply a Heaviside projection [21] to the filtered density field (𝜌)
and obtain the projected (physical) density field (𝜌) as

𝜌(𝐗) = tanh(𝛽𝜃) + tanh(𝛽(𝜌(𝐗) − 𝜃))
tanh(𝛽𝜃) + tanh(𝛽(1 − 𝜃))

, (6)

where 𝜃 = 0.5 is a prescribed threshold value, and 𝛽 is a sharpness parameter. As for the filtered frequency fields, they need to
adhere to the axiom of probability: ∑𝑀𝚋𝚕𝚘𝚌𝚔

𝑖=1 𝜉𝑖(𝐗) = 1. Moreover, we need to prescribe tighter bounds to the frequency fields in
certain scenarios, i.e., 𝜉𝑖 ∈ [𝜀, 1 − 𝜀] ⊆ [0, 1] for 𝑖 = 1, 2,… ,𝑀𝚋𝚕𝚘𝚌𝚔 and some 𝜀 ∈ [0, 0.5), for the investigation purpose and for
promoting a feasible solution of the virtual growth algorithm. To achieve this, we propose to apply a normalization projection (see
detailed discussion in Appendix A) to the filtered frequency fields (𝜉1–𝜉𝑀𝚋𝚕𝚘𝚌𝚔 ) and obtain the projected (physical) ones (𝜉1–𝜉𝑀𝚋𝚕𝚘𝚌𝚔 )
s

𝜉𝑖(𝐗) =
𝜉𝑖(𝐗)

∑𝑀𝚋𝚕𝚘𝚌𝚔

𝑗=1 𝜉𝑗 (𝐗)
∈ [0, 1] for 𝑖 = 1, 2,… ,𝑀𝚋𝚕𝚘𝚌𝚔 and 𝑀𝚋𝚕𝚘𝚌𝚔 ≥ 2. (7)

We shall now elucidate the significance of the physical density (𝜌) and frequency (𝜉1–𝜉𝑀𝚋𝚕𝚘𝚌𝚔 ) fields. Fig. 5(a) and (b) showcase the
optimized physical density and frequency fields, respectively, for the design of Case 2 in Section 4.3. The physical density, 𝜌, serves as
a descriptor of the material arrangement within the structure, where 𝜌(𝐗) = 1 signifies the solid regions, while 𝜌(𝐗) = 0 designates
oid spaces. The physical frequency fields, 𝜉𝑖(𝐗) for 𝑖 = 1, 2, 3, 4, represent the frequency distribution of the 𝑖th type of building

block, respectively. In essence, they quantify the likelihood of encountering a building block of type 𝑖 at position 𝐗. Through the
parameterization of the design space utilizing the physical density (𝜌) and physical frequency (𝜉1–𝜉4) fields, we achieve an effective
means of quantifying both the material arrangement and the distribution of building blocks across the design domain. Specifically,
following the topology optimization in Eq. (10), which will be introduced later, we supply the optimized physical density and
frequency fields to the extended virtual growth algorithm in Section 2.2. Subsequently, this algorithm is employed to generate the
optimized multiscale structure, as illustrated in Fig. 5(c). During this process, topology optimization identifies the optimal material
property distribution, achieved by the optimized physical density and frequency fields. The virtual growth algorithm then utilizes
these optimized fields to actualize the multiscale design, enabling seamless collaboration between topology optimization and the
virtual growth algorithm.

3.3.2. Elasticity interpolation
With the design space parameterized by the physical density (𝜌) and frequency (𝜉1–𝜉𝑀𝚋𝚕𝚘𝚌𝚔 ) fields, we can now interpolate the

material’s elasticity tensor (C) for varying values of these fields. The interpolation rule is defined as

C =
[

𝜀𝜌 + (1 − 𝜀𝜌)𝜌
𝑝𝜌
]

⋅
[

(1 − 𝛼) ⋅ C𝑑 (𝜉1, 𝜉2,… , 𝜉𝑀𝚋𝚕𝚘𝚌𝚔 ) + 𝛼 ⋅ C𝑝

]

, (8)

hich is essentially similar to those in [79–81]. Specifically, the first term involves the interpolation of material existence through
he application of a modified SIMP rule [82,83] to the physical density field. Simultaneously, the second term employs a weighted
um to interpolate designable and passive regions. In Eq. (8), the parameter 𝜀𝜌 is a small positive number (𝜀𝜌 = 10−6 in this work)
hat prevents singularity of the global stiffness matrix in the FEA. The parameter 𝑝𝜌 is a power that penalizes intermediate values
f the physical density field 𝜌 ∈ (0, 1) and promotes a 0–1 solution. The function 𝛼(𝐗) characterizes the designable (𝛺𝑑) and passive
𝛺𝑝 = 𝛺 ⧵𝛺𝑑) regions and is defined as

𝛼(𝐗) =
{

0, if 𝐗 ∈ 𝛺𝑑
1, if 𝐗 ∈ 𝛺𝑝

.

The variables C𝑝(𝐗) and C𝑑 (𝐗) are the elasticity tensors of the passive and designable materials, respectively. Recall that C𝑑 (𝐗) can
11

be computed from the trained neural network in Eq. (4).
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Fig. 5. Illustration of the design space parameterization. (a)–(b) Optimized physical density and frequency fields for the design exemplified in Case 2 of
Section 4.3. (c) Resultant optimized multiscale structure.

Next, the static equilibrium equations, based on the balance of linear momentum [75], are established as

⎧

⎪

⎨

⎪

⎩

Div(C ∶ 𝐄) + 𝐛 = 𝟎, 𝐗 ∈ 𝛺

𝐮 = 𝐮, 𝐗 ∈ 𝜕𝛺

(C ∶ 𝐄) ⋅ 𝐍 = 𝐭, 𝐗 ∈ 𝜕𝛺

, (9)

where the variable 𝐄 = (∇𝐮 +∇𝐮⊤)∕2 represents the infinitesimal strain tensor, and 𝐮 denotes the displacement field. The variables
𝐛 and 𝐭 correspond to the prescribed body force and traction vectors acting on the design domain (𝛺) and its Neumann boundary
(𝜕𝛺 ), respectively. The variable 𝐮 is the displacement field prescribed on the Dirichlet boundary (𝜕𝛺). The symbol 𝐍 denotes
the unit outward normal vector of the boundary 𝜕𝛺 .

3.3.3. Topology optimization formulation
In accordance with the previously established design space parameterization and elasticity interpolation, we now present the

proposed mathematical formulation for topology optimization as

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

minimize
𝜌, 𝜉1 , 𝜉2 , ..., 𝜉𝑀𝚋𝚕𝚘𝚌𝚔

∶ 𝐽 (𝜌, 𝜉1, 𝜉2,… , 𝜉𝑀𝚋𝚕𝚘𝚌𝚔 );

subjected to: 𝑔1 =
1
|𝛺|

∫𝛺
𝜌d𝐗 − 𝑉 ≤ 0,

𝑔2 = 𝐽 − 𝐽 ≥ 0,

0 ≤ 𝜌 ≤ 1,

𝜀 ≤ 𝜉𝑖 ≤ 1 − 𝜀, for 𝑖 = 1, 2,… ,𝑀𝚋𝚕𝚘𝚌𝚔;

with: equilibrium equations in Eq. (9).

(10)

Here, we recall both 𝜌(𝐗) ∈ [0, 1] and 𝜉𝑖(𝐗) ∈ [0, 1] for 𝑖 = 1, 2,… ,𝑀𝚋𝚕𝚘𝚌𝚔 are macroscale design variables, which are field variables
defined over the entire domain. Their corresponding physical variables, 𝜌(𝐗) ∈ [0, 1] and 𝜉𝑖(𝐗) ∈ [0, 1], describe the macroscale
material existence and the frequency hints of building blocks throughout the design domain, respectively. The variable 𝐽 is the
objective function that will be introduced below. The symbols 𝑔1 and 𝑔21 represent the volume and total strain energy constraint
functions, respectively. Here 𝑉 is the upper bound of the material volume fraction, and 𝐽 and 𝐽 are the total strain energy (defined
in Eq. (13)) and its lower bound, respectively. Again, the parameter 𝜀 ∈ [0, 0.5) is a user-defined value determining the bounds of
the frequency variables (𝜉1–𝜉𝑀𝚋𝚕𝚘𝚌𝚔 ).

We emphasize that the proposed topology optimization formulation is capable of controlling diverse structural responses. In
this study, we primarily illustrate how to program three representative types of responses — node-wise mechanical displacement

1 The total strain energy constraint, 𝑔 , is only activated in Case 2 of Section 4.2.
12
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cloaking, the manipulation of element-wise strain energy density, and the maximization of global structural stiffness. In particular,
to measure the error in displacement fitting, we define

𝐽 = 𝐽 = ‖𝜽 ⊙ (𝐔 − 𝐔)⊘ 𝐔‖𝑝, (11)

where 𝜽 signifies an indicator vector with 𝜃 ,𝑖 = 1 if the 𝑖th nodal degree-of-freedom (DOF) is controlled and 𝜃 ,𝑖 = 0 otherwise.
The variable 𝐔 denotes the global displacement vector, while 𝐔 is the target displacement vector. The operator ‖ ⋅ ‖𝑝 is employed
o gauge the 𝑝-norm of a vector. The operators ⊙ and ⊘ denote element-wise (Hadamard) vector multiplication and division,
espectively.

In a similar vein, we quantify the fitting error of strain energy density through

𝐽 = 𝐽 = ‖𝜽 ⊙ (𝐖 −𝐖)‖𝑝, (12)

where 𝜽 is an indicator vector with 𝜃 ,𝑒 = 1 if macro-element 𝑒 is under control and 𝜃 ,𝑒 = 0 otherwise. The variable 𝐖 is
vector with 𝑊𝑒 representing the strain energy density averaged over macro-element 𝑒. Meanwhile, the variable 𝐖 is the target

strain energy density vector. The average strain energy density of macro-element 𝑒 can be computed as

𝑊𝑒 =
1

2|𝛺𝑒| ∫𝛺𝑒

𝐄 ∶ C ∶ 𝐄d𝐗,

here 𝛺𝑒 represents the domain occupied by macro-element 𝑒.
Finally, to quantify the overall structural stiffness, we define the (minus) total strain energy as

𝐽 = −𝐽 = −1
2 ∫𝛺

𝐄 ∶ C ∶ 𝐄d𝐗. (13)

Note that we put a minus sign here because maximizing the total strain energy results in maximized structural stiffness under
displacement loading.

To solve the topology optimization problem outlined in Eq. (10), we employ the adjoint method [21] for evaluating the relevant
sensitivities. This sensitivity evaluation involves the backward propagation of a neural network (Fig. 4(a)), and we provide a detailed
description of this intricate sensitivity analysis in Appendix B. Furthermore, we utilize the method of moving asymptotes (MMA) [84]
to update the design variables (𝜌 and 𝜉1–𝜉𝑀𝚋𝚕𝚘𝚌𝚔 ). The solution procedure for the topology optimization problem is presented in
Algorithm 4. To implement this solution procedure, we utilize an in-house Python code [74] while making use of the open-source
FEniCSx [85] and PyTorch [77] packages. The FEniCSx package facilitates parallel computation for the FEA and a portion of the
sensitivity analysis, while the PyTorch package enables both the forward pass of the neural network (Fig. 4(a)) and the remaining
sensitivity analysis. Appendix B also briefly discusses the combined utilization of automatic differentiation from these two packages
to carry out the complete sensitivity analysis.

Algorithm 4: Solution procedure for the topology optimization problem in Eq. (10)
1 Inputs: optimization iteration counter, 𝑛 ← 1; maximum iteration, 𝑁𝑚𝑎𝑥; the initial values of design variables, 𝜌 ← 𝜌0 and

𝜉𝑖 ← 𝜉𝑖,0 for 𝑖 = 1, 2, ...,𝑀block;
2 while 𝑛 ≤ 𝑁𝑚𝑎𝑥 do
3 Apply the linear filter (Eq. (5)) on the design variables, 𝜌 and 𝜉1–𝜉𝑀block , to obtain the filtered variables, 𝜌 and

𝜉1–𝜉𝑀block ;
4 Apply the Heaviside projection (Eq. (6)) on the filtered density variable, 𝜌, to obtain the physical one, 𝜌;
5 Apply the normalization projection (Eq. (7)) on the filtered frequency variables, 𝜉1–𝜉𝑀block , to obtain the physical ones,

𝜉1–𝜉𝑀block ;
6 Substitute the physical variables (𝜌 and 𝜉1–𝜉𝑀block ) into Eq. (8) to evaluate the interpolated elasticity tensor, C;
7 Use the interpolated elasticity tensor, C, to establish the static equilibrium equations in Eq. (9) and use FEA to

numerically solve the global displacement vector, 𝐔;
8 Based on the global displacement vector, 𝐔, evaluate the function values, 𝐽 , 𝑔1, and 𝑔2, and perform the sensitivity

analysis (see Appendix B) to obtain the function gradients with respect to the design variables, 𝜌 and 𝜉1–𝜉𝑀block ;
9 Based on the function values and gradients, utilize the MMA optimizer to update the design variables, 𝜌 and 𝜉1–𝜉𝑀block ;
10 Update the iteration counter, 𝑛 ← 𝑛 + 1;
11 end

4. Examples

In this section, we present four sample examples to demonstrate the application of the proposed topology optimization
ethodology for designing irregular multiscale structures with customizable responses. We specifically program three types of

tructural responses — node-wise displacement, element-wise strain energy density, and global structural stiffness. All computations
re performed using our in-house Python code on a workstation equipped with an AMD Ryzen Threadripper PRO 3995WX CPU
eaturing 64 cores and 128 threads, an NVIDIA Quadro RTX 4000 graphics card, and 256 GB of memory.
13
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Fig. 6. Mechanical cloaking achieved by programming the displacement field. (a) The design setup of the reference domain. (b)–(c) Displacements field in the
horizontal (x-) and vertical (y-) directions. (d) The structure with a void in the middle. (e)–(f) Distorted displacement fields due to the void. (g) Optimized
irregular multiscale structure. The inset shows the zoom-in view of the microstructure and the associated frequency hints of building blocks. (h)–(i) Recovered
displacement fields evaluated at the microscale. The insets show the zoom-in views of the microstructural displacement fields. (j) Displacement fitting effect
of the optimized structure, evaluated at the microscale. (k) A convergence plot demonstrating the relationship between the displacement fitting error and the
number of building blocks (in each direction) per macro-element.

4.1. Mechanical displacement cloaking

4.1.1. Programming the structural displacement response
In this subsection, we showcase the capability of the proposed virtual-growth-based topology optimization methodology in

programming node-wise displacement responses. Our objective is to achieve a mechanical cloaking effect [15,86] within a structure,
making the displacement field around a void indistinguishable from the surrounding material (Fig. 6). In Fig. 6(a), we present
the reference structure subjected to uniaxial tension with an applied displacement loading of 𝑢=2 mm. This reference structure
is composed of an isotropic linear elastic material with Young’s modulus 𝐸 = 50 MPa and Poisson’s ratio 𝜈 = 0.2. The domain is
discretized using a structured grid consisting of 50 × 50 first-order quadrilateral Lagrange macro-elements. By employing a standard
FEA, we compute the displacement fields in both horizontal and vertical directions, denoted as 𝑢𝑥 and 𝑢𝑦 respectively (Fig. 6(b)–(c)).

Subsequently, we introduce a square void within the structure, as illustrated in Fig. 6(d). Such a void can be utilized for concealing
objects in specific applications. As expected, the removal of material leads to significant alterations in the displacement fields
(Fig. 6(e)–(f)), both in the horizontal and vertical directions (𝑢𝑥 and 𝑢𝑦, respectively), when compared to the reference structure
(Fig. 6(b)–(c)). To quantitatively assess these displacement changes, we calculate the relative errors, denoted as 𝑒𝑥 and 𝑒𝑦, for the
horizontal and vertical directions, respectively. These relative errors are given by

𝑒𝑥 =
‖𝐔𝑥 − 𝐔𝑥‖2

‖𝐔𝑥‖2

and 𝑒𝑦 =
‖𝐔𝑦 − 𝐔𝑦‖2

‖𝐔𝑦‖2

.

Here, 𝐔𝑥 and 𝐔𝑦 represent the global displacement vectors in the horizontal and vertical directions, respectively, within the
displacement control region (encompassing the entire structure excluding the void). Meanwhile, 𝐔𝑥 and 𝐔𝑦 are the corresponding
global displacement vectors of the reference structure. The computed relative errors are 𝑒𝑥 = 34.0% and 𝑒𝑦 = 8.1%, highlighting the
notable changes in the displacement fields due to the void’s presence.
14
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To achieve the desired mechanical cloaking effect, we undertake the optimization of the materials surrounding the void (as
epicted in the designable region in Fig. 6(d)). The primary goal is to minimize the displacement errors, 𝑒𝑥 and 𝑒𝑦. We initiate this

process with four building block types, namely cross, rhombus, arrow, and corner in Fig. 2. Our methodology focuses on
optimizing their frequency hints by adjusting the frequency variables, 𝜉1–𝜉4, while keeping the density variable fixed at 𝜌 ≡ 1. The
ey optimization parameters employed in this process are as follows. The 𝑝-norm parameter for the displacement error in Eq. (11)
s set as 𝑝 = 2. We maintain an allowable volume fraction of 𝑉 = 1, a frequency field range of [0, 1] (𝜀 = 0), and a filter radius of
𝑅𝜉 = 10−4 mm for frequency fields. Finally, we cap the optimization process with a maximum of 𝑁𝑚𝑎𝑥 = 400 iterations.

In the current example, we conduct topology optimization using parallel computation across 4 threads, resulting in a total
omputational time of 0.568 h. Utilizing the optimized frequency fields, we apply the extended virtual growth algorithm to construct
he irregular multiscale structure displayed in Fig. 6(g). In this structure, we arrange 3 × 3 building blocks within each macro-
lement. Upon closer inspection (as seen in the zoom-in view), we can observe the seamless integration of microstructures with
heir corresponding optimized frequency hints. To verify the achieved mechanical cloaking effect, we perform standard FEA for
he optimized structure in Fig. 6(g). The resulting displacement fields in the horizontal and vertical directions, evaluated at the
icroscale, are presented in Fig. 6(h)–(i), respectively. Notably, the displacement fields of the optimized structure closely align
ith those of the reference structure in Fig. 6(b)–(c). This alignment is further substantiated by the relative errors, 𝑒𝑥 = 4.6%
nd 𝑒𝑦 = 2.0%, as well as a direct quantitative comparison (Fig. 6(j)) between the actual displacement, 𝐔𝑥 (𝐔𝑦), and the target

displacement, 𝐔𝑥 (𝐔𝑦). Moreover, to emphasize that this promising displacement fitting effect is not confined to specific domain
eometries, Appendix C presents displacement fields for a structure with a disk-shaped void and a ring-shaped designable region. In
his case, we also observe a good agreement between the actual and target displacements, remarking the versatility of the proposed
pproach. We also stress that our primary focus here is to showcase displacement tunability. As a result, we concentrate solely on
chieving the mechanical cloaking effect in a single loading direction. To extend this cloaking effect to multiple directions [87],
ne can integrate multiple load cases into the proposed methodology.

.1.2. A convergence study
In Fig. 6(j), we indeed observe a satisfactory displacement fitting effect, demonstrating the successful realization of mechanical

loaking. However, it is valuable to conduct a convergence study to assess the robustness of the proposed methodology. This
nvestigation is particularly pertinent because the underlying virtual growth algorithm is stochastic, and the structural response
lso relies on the number of building blocks filled within each macro-element. Furthermore, the proposed multiscale topology
ptimization framework implicitly assumes that the microstructures locally satisfy periodic boundary conditions. This assumption
ay be invalid if adjacent microstructures have significantly different design variables or if the microstructures are near the

oundaries of the optimized design. In this work, linear filters (Eq. (5)) for the design variables are employed, if needed, to ensure
smooth variation across the design domain, resulting in adjacent unit cells exhibiting similar material properties and adhering to
eriodic boundary conditions. However, the microstructures near the boundaries of the optimized structure may not strictly conform
o periodic boundary conditions, potentially causing slight discrepancies between microscale and macroscale structural responses.

e have also addressed this issue through the following convergence study.
To conduct the convergence study, we introduce the parameter 𝑘, where 𝑘 denotes the number of building blocks per macro-

lement in each direction, taking values from the set {1, 2, 3, 4, 5}. For each 𝑘 value, we generate 5 samples using the same
optimized frequency fields by executing the extended virtual growth algorithm multiple times. Subsequently, we discretize these
samples to ensure they have a similar number of DOFs, followed by conducting standard FEA to evaluate the displacement field.
To quantitatively evaluate the convergence of our approach, we compute the relative displacement error at the microscale using
Eq. (11). In Fig. 6(k), we present the mean values and standard deviations of the relative errors, denoted as 𝑒𝑢, for different values
of 𝑘. Additionally, we provide a trend line fitted according to the mean values. The following observations can be made from
this analysis. First, the mean error decreases as the number of building blocks per macro-element (𝑘) increases. This reduction
in error is attributed to the presence of more building blocks, which results in a more pronounced contrast between the length
scales of the macro-element and the building block. This contrast, in turn, leads to higher precision in the homogenized material
properties and subsequently less error in the performance prediction. Second, the standard deviation, which quantifies the variability
in performance among different samples for the same 𝑘 value (essentially, the reproducibility of the optimized design), also decreases

ith larger values of 𝑘. This reduction is consistent with the law of large numbers, as a larger number of filled building blocks tends
o converge the actual frequency hints of building blocks towards the desired one. Last, the trend line fitted to the mean values
ndicates that the mean error converges when 𝑘 ≥ 3. These observations highlight the practical use of the method, with larger 𝑘

values leading to improved convergence in terms of displacement error.
Table 1 presents a comprehensive overview of our convergence study, offering detailed statistics that include the average

number of DOFs, relative displacement errors, virtual growth time required for sample generation, and computational time for
FEA across different block numbers. It is noteworthy that FEA tasks involve the discretization of building blocks into sufficiently
small finite elements to minimize discretization errors, resulting in FEA models with 11–14 million DOFs. To efficiently manage such
computationally demanding tasks, we employ parallel computation utilizing 12 threads within our in-house Python code, resulting
in FEA computational time of approximately 150 s. Finally, we conclude that our proposed methodology has successfully delivered
an optimized irregular multiscale structure with tunable node-wise displacement responses. These tunable responses are not only
15

accurate but also highly reproducible, as demonstrated by the findings of this convergence study.
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Table 1
Statistics of the convergence study for the optimized structure in Fig. 6(g).

Block numbers DOF numbers Displacement errors Growth time (s) FEA time (s)

1 × 1 13,040,550 5.84% 5.2 153.6
2 × 2 11,939,651 3.02% 31.0 137.6
3 × 3 12,734,537 2.56% 197.2 146.2
4 × 4 13,512,658 2.74% 338.2 157.0
5 × 5 13,808,400 2.64% 1194.0 162.0

4.2. Programming the strain energy density

In this subsection, we illustrate how to program another crucial type of response — element-wise strain energy density. Through
his example, we also demonstrate the simultaneous optimization of both density and frequency variables and address the challenges
osed by an unstructured grid. Fig. 7(a) shows the design setup including the design domain, boundary conditions, and control
egions. The design domain consists of a centrally fixed disk, with rotational displacement loading applied at a magnitude of
= 1 mm around the disk. The control region is in the shape of a Taiji symbol, featuring two interconnected, anti-symmetric areas.

Our objective is to manipulate the strain energy density, denoted as 𝑊 , within these two regions to achieve values of 𝑊 = 0.05 and
0.15 N/mm2, respectively. We also require that the outer ring-shaped region remains solid (𝜌 ≡ 1).

To program the strain energy density, we consider two distinct cases — optimizing frequency variables exclusively in Case 1
nd optimizing both density and frequency variables in Case 2. Subsequently, we leverage the proposed methodology to design
rregular multiscale structures. For topology optimization, we discretize the design domain using an unstructured grid consisting
f 16,144 first-order quadrilateral Lagrange macro-elements, each with a size ℎ = 0.3 mm. The remaining topology optimization
arameters are as follows. The parameter governing the 𝑝-norm of the fitting error of the strain energy density in Eq. (12) is 𝑝 = 2.
he allowable volume fraction is 𝑉 = 1 in Case 1 and 𝑉 = 0.7 in Case 2. The frequency field range is [0, 1] (𝜀 = 0). The filter radii of
he density and frequency fields are 𝑅𝜌 = 4 mm and 𝑅𝜉 = 10−4 mm, respectively. The parameters used in the interpolated elasticity
n Eq. (8) are 𝜀𝜌 = 10−6 and 𝑝𝜌 = 3. The maximum optimization iteration is 𝑁𝑚𝑎𝑥 = 400. Additionally, for Case 2, the sharpness
arameter in the Heaviside projection (Eq. (6)) is initially set as 𝛽 = 1 and then doubled every 40 iterations until 𝛽 = 256. Here, we
ctivate the strain energy constraint, 𝑔2, in the topology optimization formulation (Eq. (10)) for Case 2 to ensure an adequate level
f structural stiffness. The introduction of this constraint serves to prevent potential macroscopic structural disconnection, floating
embers, and thin joints. However, the necessity of this minimum strain energy constraint might vary, especially if the target strain

nergy density is sufficiently large. In this regard, we set the lower bound for the total strain energy as 𝐽 = 150 N ⋅mm, determined
through a trial-and-error process. It is important to emphasize that this lower bound should be less than the strain energy of the
corresponding stiffness maximization design.

Note that an unstructured grid is used in topology optimization to yield smooth boundaries of control regions. However, a
structured grid with square elements in 2D and cubic elements in 3D is required when creating the material database. To address
this requirement, we propose a two-grid projection scheme as depicted in Appendix D. Specifically, this scheme involves projecting
the optimized density and frequency fields obtained from an unstructured grid used in topology optimization onto a structured grid.
Subsequently, these projected fields guide the virtual growth process. With the implementation of this proposed two-grid projection
scheme, we present the optimized irregular multiscale structure for Case 1 in Fig. 7(b). In this particular instance, the density variable
is held constant at 𝜌 ≡ 1, while the frequency variables, 𝜉1–𝜉4, are subjected to optimization. The generated structure is composed
of identical building blocks as shown in Fig. 2, achieving seamless integration. By performing FEA on the optimized structure, we
illustrate the strain energy density field in Fig. 7(c). Notably, the strain energy densities within the two control regions align with
the target values, as indicated by the matching colors to the design setup in Fig. 7(a). This alignment is further evidenced by a direct
comparison between the actual and target strain energy densities of macro-elements within the two control regions, as demonstrated
in Fig. 7(d).

Compared to classical multi-material topology optimization [16,28], which rely on finite and discrete candidate materials, our
proposed approach operates within a vast and continuous material space, as exemplified by the attainable material properties
presented in [71]. Consequently, our proposed methodology possesses the capability to program intricate responses, as evidenced
by the complex strain energy density distribution illustrated in Fig. 7(c). To further underscore the robust programmability of strain
energy density, we concentrate on the design of a lightweight structure in Case 2, wherein the total material utilization is restricted
to 70% of that in Case 1. Fig. 7(e) showcases the resulting irregular multiscale structure generated based on the optimized density
and frequency fields. Despite employing fewer materials, this structure also successfully attains the target strain energy densities, as
evidenced by the strain energy density distribution depicted in Fig. 7(f), and the comparison between the actual and target strain
energy densities presented in Fig. 7(g). To perform topology optimization, we utilize parallel computation across 4 threads for both
cases, resulting in computational time of 3.15 and 4.40 h, respectively. For clarity and ease of comprehension, we visually elucidate
the concept of structural growth in Fig. 7(h). This illustration demonstrates the incremental assembly of building blocks into the
grid, with each unit seamlessly fitting in accordance with the optimized density and frequency fields.
16
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Fig. 7. Programming the strain energy density on a rotational disk. (a) Design setup including the design domain, boundary conditions, and the control regions.
(b)–(d) Optimized design, strain energy density distribution (unit: N/mm2), and the fitting effect of the strain energy density of Case 1. (e)–(g) The counterparts
of Case 2. (h) The virtual growth process of the optimized structure in (e). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

4.3. Planar beam with maximized structural stiffness

Our previous discussions have primarily centered on programming local structural responses, such as node-wise displacement
and element-wise strain energy density. In this subsection, our focus shifts towards optimizing a global response — the structural
stiffness — by maximizing the total strain energy. Fig. 8(a) depicts the design domain of a planar beam subjected to three-point
bending with a prescribed displacement loading of 𝑢 = 5 mm. Our objective is to maximize the overall structural stiffness through the
optimization of both the density and frequency fields. To accomplish this goal, we discretize the design domain using a structured
grid consisting of 180 × 60 first-order quadrilateral Lagrange macro-elements. Subsequently, we employ the proposed methodology,
which encompasses both topology optimization and the virtual growth algorithm, to facilitate the optimization process.

To explore the impact of the lower bound (𝜀) applied to the frequency variables on structural performance, we examine two
distinct cases, each featuring different 𝜀 values: 𝜀 = 0 in Case 1 and 𝜀 = 0.15 in Case 2, and the resulting ranges of frequency fields
are [0, 1] and [0.15, 0.85], respectively. The remaining topology optimization parameters are as follows. The allowable volume
fraction is 𝑉 = 0.5. The filter radii of the density and frequency fields are 𝑅𝜌 = 𝑅𝜉 = 4.0 mm in Case 1 and 𝑅𝜌 = 𝑅𝜉 = 2.0 mm in Case
2. The parameters used in the interpolated elasticity in Eq. (8) are 𝜀𝜌 = 10−6 and 𝑝𝜌 = 3. The sharpness parameter in the Heaviside
projection (Eq. (6)) is initially set as 𝛽 = 1 and then doubled every 40 iterations until 𝛽 = 256. Finally, the maximum optimization
iteration is 𝑁𝑚𝑎𝑥 = 400.

In this example, we leverage parallel computing across 8 threads to accelerate the topology optimization process. This
optimization effort yields a total runtime of 1.69 h for Case 1 and 1.72 h for Case 2, and approximately 77% of the computational
time is due to the solution update with an MMA optimizer [84]. Utilizing the optimized density and frequency fields, we employ
the same set of building blocks as shown in Fig. 2 to generate the optimized structures for both cases (see digital rendering in
17
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Fig. 8. Planar beam with maximized overall structural stiffness. (a) Design setup including the design domain, design variables, and the optimization objective.
(b) The digital rendering and physical models of the optimized designs. The zoom-in views demonstrate the microstructures and the associated frequency hints of
building blocks at different locations. (c) The histories of the strain energies of two cases during topology optimization. (d) A convergence study for investigating
the relationship between the total strain energy and the number of building blocks (in each direction) per macro-element. The dots represent the strain energy
of different samples, evaluated at the microscale, and the dashed line represents the macroscale value.

Fig. 8(b)). Upon comparing the two optimized structures, it becomes evident that in Case 1, a clear preference emerges for two
types of building blocks — namely, the cross building blocks, which cluster in the top and bottom members, and the rhombus
building blocks, which concentrate in the middle inclined members. This preference arises from a fundamental structural analysis,
where the principal stress aligns horizontally in the top and bottom members, and diagonally in the middle members. As a result,
the selection of cross and rhombus building blocks constructs an efficient load path, thereby maximizing the overall stiffness.
Conversely, the optimized structure in Case 2 exhibits a mixed utilization of all four building block types. This variation arises due
to the imposition of a lower bound (and also an upper bound) on the frequency variables, which leads to a more diverse selection
of building blocks.

Fig. 8(b) additionally provides physical models of the optimized structures in both cases. These physical models are created using
a commercial masked-stereolithography (m-SLA) process, specifically employing the Elegoo Saturn 2 printer and Elegoo water-
washable photopolymer resins. When comparing the digital renderings with the physical models of the optimized structures, we
observe that all the geometrical features are faithfully preserved in the physical models. Furthermore, the virtual growth algorithm
18
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Table 2
Statistics of the convergence study for the optimized structure of Case 1 in Fig. 8(b).

Block numbers DOF numbers Strain energy errors Growth time (s) FEA time (s)

1 × 1 24,825,370 −2.59% 24.1 273.6
2 × 2 23,342,659 −2.37% 273.0 251.2
3 × 3 26,506,099 −1.85% 1318.0 299.2
4 × 4 29,734,792 −1.06% 3914.0 344.2
5 × 5 29,579,150 0.53% 9300.0 369.6

plays a pivotal role in achieving seamless connections between structural members at the joints, contributing to the structural
integrity and functionality of the physical models. This successful translation from digital rendering to physical realization remarks
the manufacturability of the designs obtained through our proposed methodology.

Fig. 8(c) shows the evolution of total strain energies (𝐽 ) of two optimized structures during topology optimization. The strain
nergies start to converge after around 200 optimization iterations for both cases. Notably, the optimized structure in Case 1 exhibits
higher strain energy (higher stiffness), thus demonstrating superior mechanical efficiency. This result stems from the imposition of

ewer constraints on the bounds of the frequency variables, allowing the structure to freely select the most effective building blocks.
owever, we emphasize that imposing tighter bounds for the frequency variables is necessary for certain problems (not shown
ere) to find a feasible solution within the virtual growth algorithm. Additionally, it is crucial to avoid overly tight bounds for the
requency variables, as those bounds can severely restrict the design space. Based on our tests, setting 𝜀 ∈ [0, 0.15], i.e., establishing
requency bounds from [0, 1] to [0.15, 0.85], has proven effective for most examples.

To further study the characteristics of the optimized structure in Case 1, we conduct a convergence study that examines how the
umber of building blocks influences the total strain energy (structural stiffness). Similar to the investigation depicted in Fig. 6(k), we
mploy the extended virtual growth algorithm to generate five samples for varying numbers of building blocks (in each direction)
er macro-element, denoted as 𝑘 = 1, 2, 3, 4, 5. These samples are generated based on the same optimized physical density and
requency fields. Subsequently, we perform standard FEA at the microscale using parallel computation with 12 threads to assess the
ctual total strain energy, as illustrated in Fig. 8(d). Fig. 8(d) reveals that the microscale total strain energy remains consistent
or structures with the same 𝑘 value, indicating good reproducibility. Moreover, the microscale total strain energy exhibits an
ncreasing trend with higher values of 𝑘, ultimately converging to the macroscale strain energy determined through the evaluation of
omogenized material properties. Detailed statistics of the convergence study are presented in Table 2, encompassing information on
lock numbers, DOF numbers, the relative errors between microscale and macroscale total strain energies, and the computational
ime required for both the virtual growth process and FEA. We highlight that our in-house Python code, equipped with parallel
omputing capabilities, efficiently manages the computationally intensive FEA tasks encompassing 24 to 30 million DOFs with a
elatively short computational time of approximately 300 s.

Despite the promising convergence trend, it is important to conduct a comprehensive investigation comparing the newly proposed
ultiscale structures (Fig. 8(b)) with the corresponding single-scale structure (Fig. 9(a)). The single-scale design in Fig. 9(a) is

ptimized under identical boundary conditions in Fig. 8(a). Utilizing the classical topology optimization formulation from [21],
his single-scale design maintains an allowable volume fraction equivalent to the actual microscale solid material of Case 1 in
ig. 8(b), denoted as 𝑉 = 0.267. The comparison between Fig. 8(b) and Fig. 9(a) shows that the macroscale topology of the proposed
ultiscale designs aligns with the single-scale structure. This alignment suggests that the proposed framework effectively optimizes

he macroscale topology. Additionally, Fig. 9(b) demonstrates the evolution of the strain energy for the single-scale structure, which
onverges to 429.5 N ⋅mm after 400 optimization iterations. In contrast, Cases 1 and 2 of the multiscale structures in Fig. 8(b) exhibit
onverged strain energies of 189.5 N ⋅mm and 132.5 N ⋅mm, respectively. These values are 56% and 69% lower than the strain energy
f the single-scale structure. Such performance differences are anticipated as multiscale structures that utilize prescribed primitive
nit cells either explicitly or implicitly impose local volume constraints compared to the single-scale designs, thereby limiting the
ttainable material properties within the Hashin–Strikman bounds. However, despite the performance gap, multiscale structures
emain preferable in specific scenarios, such as situations where their porosity can enhance failure resistance [55,72,88]. We also
mphasize that the current example is presented solely to illustrate the application of the proposed formulation in controlling global
tructural responses of multiscale structures.

.4. Rotational spherical shell with maximized structural stiffness

In this concluding illustration, we further extend the proposed methodology to the optimization of structural responses within
he realm of 3D designs. Our focus centers on the maximization of structural stiffness, achieved by optimizing the overall strain
nergy with our established methodology. Fig. 10(a) provides a comprehensive depiction of the design configuration, encompassing
he design domain, boundary conditions, design variables, and the primary optimization objective. The design domain is a spherical
hell featuring an outer radius of 𝑅out = 50 mm and an inner radius of 𝑅in = 45 mm. Boundary conditions are imposed by restraining
he upper and lower regions of the domain, while a rotational displacement loading of 𝑢 = 1 mm is applied to the midplane. In this
ontext, our principal aim is the enhancement of structural stiffness by optimizing the material layout and the distribution of 3D
uilding blocks.

To work towards our optimization objective, we employ an unstructured grid to discretize the design domain. This grid consists
19

f 190,080 first-order hexahedral Lagrange elements, each with a size of ℎ = 1 mm. The remaining topology optimization parameters



Computer Methods in Applied Mechanics and Engineering 425 (2024) 116864Y. Jia et al.
Fig. 9. Single-scale structure with maximized overall structural stiffness. (a) Optimized single-scale structure. (b) The evolution of the strain energy.

are as follows. The allowable volume fraction is 𝑉 = 0.15. The range of the frequency field is [0.15, 0.85] (𝜀 = 0.15). The filter
radii of the density and frequency fields are 𝑅𝜌 = 𝑅𝜉 = 3.5 mm. The parameters used in the interpolated elasticity in Eq. (8) are
𝜀𝜌 = 10−6 and 𝑝𝜌 = 3. The sharpness parameter in the Heaviside projection (Eq. (6)) is initially set as 𝛽 = 1 and then doubled every
40 iterations until 𝛽 = 256. Finally, the maximum optimization iteration is 𝑁𝑚𝑎𝑥 = 400.

In this example, we harness the computational power of parallel computing across 4 threads to expedite the topology optimization
process, culminating in a total runtime of 28.9 h. Fig. 10(b) presents the optimization histories of the objective function (total strain
energy), 𝐽 , and the actual material volume fraction, 𝑉 . Both two values exhibit convergence tendencies after approximately 300
iterations, with the actual material volume fraction (𝑉 ) reaching its predefined upper threshold of 𝑉 = 0.15. Subsequently, based on
the optimized density and frequency fields, we employ the extended virtual growth algorithm to generate the optimized irregular
multiscale structure. Fig. 10(c) demonstrates the digital rendering of such a virtual growth process. We observe the gradual ‘‘growth’’
of the structure, ultimately resulting in its complete formation after a total of 11,867 iterations. Additionally, Fig. 10(c) displays
two sectional views to better visualize the generated structure, which exhibits an organic material layout and tailored distribution
of building blocks.

To substantiate the manufacturability of this intricately optimized structure, we present a 3D printed physical model, offering
various perspectives in Fig. 10(d). Once again, the physical model faithfully reproduces the free-form material layout and tailored
distribution of building blocks, effectively preserving the geometrical intricacies observed in the digital rendering in Fig. 10(c). In
the zoomed-in view on the right-hand side of Fig. 10(d), a meticulous examination reveals the seamless integration of all types of
building blocks in constructing the microstructures within the generated design. The 3D printing details are as follows. To ensure
the successful production and detailed visualization of this structure, we enlarge the design by a factor of two in all dimensions
and then divide it into four distinct parts. Subsequently, each segment is crafted using the Elegoo Saturn 2 printer, accompanied by
Elegoo water-washable photopolymer resins, chosen for their printing precision and ease of printing. Following the printing process,
we assemble the individual parts using Loctite, a high-quality superglue from Henkel Corporation, guaranteeing structural integrity.
Lastly, to enhance the visual impact, we apply a layer of metallic paint, specifically Krylon Fusion All-In-One by Krylon Products
Group, to the assembled structure. This comprehensive workflow ensures that the final result not only captures the geometrical
features of the digital design but also presents it in an aesthetically pleasing and tangible form.

5. Conclusions and discussion

In this study, we present a multiscale topology optimization approach centered around a virtual growth scheme, designed for
optimizing non-periodic multiscale structures with tunable responses, while naturally ensuring manufacturability. The proposed
methodology comprises four interconnected components: the generation of a discrete material database, the training of a neural
network model, topology optimization, and the generalized virtual growth algorithm. These components collaborate harmoniously
to optimize material distribution through a density variable, 𝜌, and building block distribution through frequency hints, 𝜉1–𝜉𝑀𝚋𝚕𝚘𝚌𝚔 .
Subsequently, these optimized variables guide the virtual growth process, resulting in structures with customizable responses.
We substantiate the capabilities of this methodology through four representative examples. Specifically, we demonstrate the
programming of three distinct response types, i.e., node-wise displacement, element-wise strain energy density, and global stiffness,
in both 2D and 3D. Our results reveal a good alignment between the actual and target responses, and we verify the reproducibility of
this alignment through two convergence studies. These convergence studies also demonstrate that the optimized multiscale structures
remain independent of the number of building blocks in each macro-element. Furthermore, the designs are also unaffected by the
macro-element size, thanks to the incorporation of linear filters in (5). To demonstrate the natural connections among building
blocks and the manufacturability of the generated architectures with complex features, we 3D printed prototypes in 2D and 3D.
20
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Fig. 10. 3D rotational spherical shell with maximized stiffness. (a) Design setup including the design domain, boundary conditions, design variables, and the
optimization objective. (b) Optimization histories of the objective function (total strain energy), 𝐽 , and the actual material volume fraction, 𝑉 . (c) Digital
rendering of the virtual growth process. Two section views correspond to the final iteration of the generated structure. (d) 3D printed physical model of the
generated structure, showcased from various angles. On the right, the inset demonstrates the microstructure constructed from the prescribed building blocks.
21
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We highlight that our approach does not impose strict limitations on either the quantity or the geometrical configurations of
he building blocks, thereby enabling the creation of intricate aperiodic multiscale structures. Furthermore, owing to the extended
irtual growth algorithm, the generated multiscale structures exhibit stochastic, self-sustaining ensembles composed of given
uilding blocks. These building blocks are chosen to ensure a manufacturable minimum feature size, avoiding any delicate or
rotruding elements. This inherent self-supporting property, combined with the established minimum feature size, greatly enhances
he feasibility of manufacturing these optimized structures via 3D printing and demonstrates the practical utility of our approach.
ur proposed methodology holds promise for a wide array of applications, including flexible electronics and vibration-dampening

ystems.
Despite the efficacy of the proposed methodology for designing irregular multiscale structures, it is essential to emphasize that

his framework can still be further improved. For instance, in the current study, we treat the unique rotated variations of building
locks in Fig. 2 as equivalent. While this approach couples the frequencies of the rotated variations with the frequency of the
uilding block, reducing the number of design variables, it may result in a larger standard deviation of the macroscale structural
erformance. As part of future work, we believe it is meaningful to directly treat the frequency of each unique rotated variation as
separate design variable. This adjustment may further reduce the standard deviation of the macroscale structural performance,

espite the convergence studies in Figs. 6(k) and 8(d).
Furthermore, the structural responses of the optimized designs are stochastic, and the current study primarily focuses on

ontrolling the average responses. In doing so, we assume that the probability distribution of the homogenized material properties
ossesses unimodality and zero skewness, as indicated in Fig. 3 in [71]. Despite the convergence studies in Figs. 6(k) and 8(d), it
ould be meaningful to theoretically prove this assumption. Additionally, to capture the stochastic nature of the design problem, it
ould be interesting to investigate how the geometries of the building blocks and adjacency rules affect the probability distribution
f material properties, and how the stochasticity of material properties further influences the randomness of structural responses.

It is also important to acknowledge that the building blocks utilized in the current study feature fixed solid material volume
ractions and unchanged geometries. Furthermore, the generated unit cells are oriented solely along the horizontal and vertical
irections, without allowance for rotation and elongation. These constraints on building blocks and unit cells may result in
uboptimal multiscale designs for stiffness maximization. Looking ahead, we aspire to extend the proposed framework to incorporate
reely rotated and elongated unit cells together with building blocks allowing variations in material fractions and geometries. This
xtension represents an ongoing area of exploration within the field of multiscale structures and metamaterials.
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Appendix A. Normalization projection with non-trivial bounds

As previously emphasized, physical frequency fields need to satisfy the probability axiom, specifically the equality constraint
∑𝑀𝚋𝚕𝚘𝚌𝚔

𝑖=1 𝜉𝑖 = 1. Furthermore, to facilitate viable solutions during the virtual growth process and to explore the influence of frequency
ariables on the performance of resulting generated structures such as those illustrated in Case 2 of Fig. 8(b), it is imperative to
mpose non-trivial lower and upper bounds, denoted as [𝑝, 𝑞] ⊆ [0, 1], on these physical variables. The equality constraint with trivial

bounds, [0, 1], is commonly required in topology optimization involving multi-materials [16,28], multi-fiber orientations [29,89],
and multi-magnetic orientations [30], where the optimized design variables are required to be discrete (0–1 solution). In this work,
we permit the frequency variables to assume non-discrete values (𝜉1–𝜉𝑀𝚋𝚕𝚘𝚌𝚔 ∈ (0, 1)), taking into account their physical significance
within the context of frequency distribution.

Efficiently enforcing the equality constraint often involves the use of two commonly employed methods — (modified) hypercube-
22

to-simplex projection (HSP) [90] and bi-value coding parameterization (BCP) [91]. When applying the modified HSP approach, it
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is necessary to define 𝑀𝚋𝚕𝚘𝚌𝚔 − 1 frequency variables and then use Eq. (5) to derive 𝑀𝚋𝚕𝚘𝚌𝚔 − 1 filtered variables. Subsequently,
these filtered variables are projected onto 𝑀𝚋𝚕𝚘𝚌𝚔 − 1 physical variables, 𝜉𝑖 ∈ [0, 1] for 𝑖 = 1, 2,… ,𝑀𝚋𝚕𝚘𝚌𝚔 − 1. Next, we directly
define the last physical variable as 𝜉𝑀𝚋𝚕𝚘𝚌𝚔 = 1 −

∑𝑀𝚋𝚕𝚘𝚌𝚔−1
𝑖=1 𝜉𝑖, and the equality constraint is automatically satisfied. However, the

modified HSP fails to uniformly assign the non-trivial bounds to these physical variables. For example, let [𝑝, 𝑞] ⊆ [0, 1] be the
bounds of the first 𝑀𝚋𝚕𝚘𝚌𝚔 − 1 physical frequency variables. We then derive the bounds of the last physical frequency variable as
[max{1 − (𝑀𝚋𝚕𝚘𝚌𝚔 − 1)𝑞, 0}, 1 − (𝑀𝚋𝚕𝚘𝚌𝚔 − 1)𝑝], which is unequal to [𝑝, 𝑞].

Alternatively, we can use BCP to enforce the equality constraint. In this approach, only log2 𝑀𝚋𝚕𝚘𝚌𝚔 frequency variables need to
be defined, with 𝜉𝑖 ∈ [−1, 1] for 𝑖 = 1, 2,… , log2 𝑀𝚋𝚕𝚘𝚌𝚔. For simplicity, we deactivate the linear filter in Eq. (5) and directly apply
the BCP projection. Consequently, this method results in 𝑀𝚋𝚕𝚘𝚌𝚔 physical variables, all adhering to the same non-trivial bounds
𝑝, 𝑞] ⊆ [0, 1], while simultaneously ensuring compliance with the equality constraint. However, BCP restricts the number of building
lock types, 𝑀𝚋𝚕𝚘𝚌𝚔, to be the power of 2. In addition, the physical variables are closely coupled and thus cannot be interchangeable
ecause fewer frequency variables are projected onto a larger number of physical ones.

In light of the aforementioned constraints and to overcome the limitations of both HSP and BCP methods, we propose a
ormalization scheme as delineated in Eq. (7) (see similar projection schemes in [81,92]). This projection guarantees that the
hysical variables, 𝜉1, 𝜉2,… , 𝜉𝑀𝚋𝚕𝚘𝚌𝚔 , adhere to the equality constraint, ∑𝑀𝚋𝚕𝚘𝚌𝚔

𝑖=1 𝜉𝑖 = 1. Moreover, these physical variables share
the same non-trivial bounds as follows. Let [𝜀, 1 − 𝜀] ⊆ [0, 1] be the bounds of frequency variables, 𝜉1, 𝜉2,… , 𝜉𝑀𝚋𝚕𝚘𝚌𝚔 , with 𝜀 ∈
[0, 0.5) of choice. We deactivate the linear filter in Eq. (5) for simplicity and derive the bounds for the physical variables as
[𝜀∕[𝑀𝚋𝚕𝚘𝚌𝚔 − 1 + (2 −𝑀𝚋𝚕𝚘𝚌𝚔)𝜀], (1 − 𝜀)∕[1 + (𝑀𝚋𝚕𝚘𝚌𝚔 − 2)𝜀]] ⊆ [0, 1] by noticing

𝜉𝑖 =
𝜉𝑖

𝜉𝑖 +
∑𝑀𝚋𝚕𝚘𝚌𝚔

𝑗=1,𝑗≠𝑖 𝜉𝑗

⎧

⎪

⎪

⎨

⎪

⎪

⎩

≥ 𝜀

𝜀 +
∑𝑀𝚋𝚕𝚘𝚌𝚔

𝑗=1,𝑗≠𝑖 𝜉𝑗
≥ 𝜀

𝜀 + (𝑀𝚋𝚕𝚘𝚌𝚔 − 1)(1 − 𝜀)
= 𝜀

𝑀𝚋𝚕𝚘𝚌𝚔 − 1 + (2 −𝑀𝚋𝚕𝚘𝚌𝚔)𝜀

≤ 1 − 𝜀

1 − 𝜀 +
∑𝑀𝚋𝚕𝚘𝚌𝚔

𝑗=1,𝑗≠𝑖 𝜉𝑗
≤ 1 − 𝜀

1 − 𝜀 + (𝑀𝚋𝚕𝚘𝚌𝚔 − 1)𝜀
= 1 − 𝜀

1 + (𝑀𝚋𝚕𝚘𝚌𝚔 − 2)𝜀

.

To accomplish the sensitivity analysis, we provide the derivative of the physical variable, 𝜉𝑖, with respect to the frequency
variable, 𝜉𝑗 , as

d𝜉𝑖
d𝜉𝑗

=
𝛿𝑖𝑗

∑𝑀𝚋𝚕𝚘𝚌𝚔

𝑘=1 𝜉𝑘 − 𝜉𝑖

(
∑𝑀𝚋𝚕𝚘𝚌𝚔

𝑘=1 𝜉𝑘)2
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
∑𝑀𝚋𝚕𝚘𝚌𝚔

𝑘=1 𝜉𝑘
−

𝜉𝑖
(
∑𝑀𝚋𝚕𝚘𝚌𝚔

𝑘=1 𝜉𝑘)2
, for 𝑖 = 𝑗

−
𝜉𝑖

(
∑𝑀𝚋𝚕𝚘𝚌𝚔

𝑘=1 𝜉𝑘)2
, for 𝑖 ≠ 𝑗

, (A.1)

where 𝛿𝑖𝑗 is the Kronecker delta with 𝛿𝑖𝑗 = 1 if 𝑖 = 𝑗 and 𝛿𝑖𝑗 = 0 otherwise.

Appendix B. Sensitivity analysis and verification

As demonstrated in Algorithm 4, sensitivity analysis constitutes a pivotal step in the execution of the proposed topology
optimization method. This approach incorporates a neural network, as depicted in Fig. 4(a), necessitating the inclusion of neural
network backpropagation within the framework of the sensitivity analysis. In this section, we elucidate the efficient handling of this
intricate sensitivity analysis process.

Fig. B.11 illustrates the computational graph encompassing both forward pass and backward propagation throughout the iterative
process of topology optimization. This computational process is composed of two key elements: design space parameterization and
FEA. The forward pass of these components assembles the global residual vector, 𝐑, and calculates the function value, 𝐽 . The primary
objective at hand is to assess the sensitivity (gradient) of a given objective or constraint function (𝐽 ) concerning the design variables
(𝜌 and 𝜉1–𝜉𝑀𝚋𝚕𝚘𝚌𝚔 ), d𝐽∕d𝜌 and d𝐽∕d𝜉1–d𝐽∕d𝜉𝑀𝚋𝚕𝚘𝚌𝚔 . To achieve this, we can follow backpropagation in Fig. B.11 and decompose the
sensitivities utilizing chain rules as

d𝐽
d𝜌 = d𝐽

d𝜌
⋅

d𝜌
d𝜌

⋅
d𝜌
d𝜌 and d𝐽

d𝜉𝑗
=

𝑁
∑

𝑖=1

𝑀𝚋𝚕𝚘𝚌𝚔
∑

𝑘=1

d𝐽
d𝐶𝑖

⋅
d𝐶𝑖

d𝜉𝑘
⋅

d𝜉𝑘
d𝜉𝑗

⋅
d𝜉𝑗
d𝜉𝑗

, 𝑗 = 1, 2,… ,𝑀𝚋𝚕𝚘𝚌𝚔,

and we only need to compute these decomposed terms. Specifically, we compute d𝜌∕d𝜌, d𝜌∕d𝜌, and d𝜉1∕d𝜉1–d𝜉𝑀𝚋𝚕𝚘𝚌𝚔∕d𝜉𝑀𝚋𝚕𝚘𝚌𝚔 by
ollowing conventions [93,94]; compute d𝜉𝑘∕d𝜉𝑗 for 𝑘 = 1, 2,… ,𝑀𝚋𝚕𝚘𝚌𝚔 and 𝑗 = 1, 2,… ,𝑀𝚋𝚕𝚘𝚌𝚔 following Eq. (A.1). We now focus

on the computation of d𝐽∕d𝜌, d𝐽∕d𝐶1–d𝐽∕d𝐶𝑁 , and d𝐶𝑖∕d𝜉𝑘 for 𝑖 = 1, 2,… , 𝑁 and 𝑘 = 1, 2,… ,𝑀𝚋𝚕𝚘𝚌𝚔 as follows.
First, we evaluate d𝐽∕d𝜌 with the adjoint method [21] to reduce the computational cost. Specifically, we rewrite any given

function, 𝐽 , in its Lagrangian form as

𝐽 = 𝐽 + 𝝀 ⋅ 𝐑

where 𝝀 is an adjoint vector to be determined and 𝜆𝑖 = 0 if DOF 𝑖 is fixed in FEA. Taking the derivative of 𝐽 with respect to the
physical density variable, 𝜌, we obtain

d𝐽 = 𝜕𝐽 + 𝜕𝐽
⋅
𝜕𝐔 + 𝝀 ⋅

(

𝜕𝐑 + 𝜕𝐑
⋅
𝜕𝐔

)

.
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Fig. B.11. The computational graph for sensitivity analysis. This comprehensive computational framework encompasses design space parameterization and FEA,
each featuring forward pass and backward propagation.

Regrouping terms yields

d𝐽
d𝜌

= 𝜕𝐽
𝜕𝜌

+ 𝝀 ⋅
𝜕𝐑
𝜕𝜌

+
[

𝜕𝐽
𝜕𝐔

+
( 𝜕𝐑
𝜕𝐔

)⊤
⋅ 𝝀

]

⋅
𝜕𝐔
𝜕𝜌

.

We eliminate the computationally expensive term, 𝜕𝐔∕𝜕𝜌, by enforcing
( 𝜕𝐑
𝜕𝐔

)⊤
⋅ 𝝀 = − 𝜕𝐽

𝜕𝐔
, (B.1)

and we then have
d𝐽
d𝜌

= d𝐽
d𝜌

= 𝜕𝐽
𝜕𝜌

+ 𝝀 ⋅
𝜕𝐑
𝜕𝜌

,

which can be expressed in a tensorial form as

d𝐽
d𝝆

= 𝜕𝐽
𝜕𝝆

+
(

𝜕𝐑
𝜕𝝆

)⊤
⋅ 𝝀 (B.2)

where 𝝆 is the vector form of the physical density variable defined as

𝝆 =

⎡
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⎢

⎢

⎢
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⋮

⎤

⎥
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⎥
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Fig. B.12. The comparisons between the sensitivities of the (a) objective function, (b) strain energy constraint, and (c) volume constraint of the optimized
tructure in Fig. 7(e) computed by the derived formula and forward finite difference. Sensitivity values are sorted to enhance visual clarity.

here 𝑁𝚎𝚕𝚎𝚖 represents the number of macro-elements. The variables 𝐗1,𝐗2,… ,𝐗𝑁𝚎𝚕𝚎𝚖 represent the centers of finite elements
1, 2,… , 𝑁𝚎𝚕𝚎𝚖, respectively. Note that the adjoint vector, 𝝀, can be solved from the adjoint equation in (B.1). Therefore, Eq. (B.2)
relies on four terms: 𝜕𝐽∕𝜕𝝆, 𝜕𝐽∕𝜕𝐔, 𝜕𝐑∕𝜕𝝆, and 𝜕𝐑∕𝜕𝐔, as also reflected in Fig. B.11. To efficiently compute these four terms, we
leverage the automatic differentiation provided by the open-source software, FEniCSx [85]. In a similar fashion, we can compute
d𝐽∕d𝐶1–d𝐽∕d𝐶𝑁 in their tensorial forms as d𝐽∕d𝐂1–d𝐽∕d𝐂𝑁 , where 𝐂1–𝐂𝑁 are the vector forms of the elasticity components with
their 𝑖th items representing the elasticity components of macro-element 𝑖 in FEA.

Next, we evaluate d𝐶𝑖∕d𝜉𝑗 for 𝑖 = 1, 2,… , 𝑁 and 𝑗 = 1, 2,… ,𝑀𝚋𝚕𝚘𝚌𝚔. To achieve this, we utilize the automatic differentiation in
nother open-source software, PyTorch [77]. PyTorch forms a computational graph when constructing a neural network and traces
he neural network’s topology for automatic differentiation during backpropagation. Such automatic differentiation is sufficient to
ompute d𝐶𝑖∕d𝜉𝑗 for one macro-element. However, a grid for topology optimization can contain thousands to millions of macro-
lements [19]. To perform such automatic differentiation in batches for multiple macro-elements, we further leverage transforms,
map and jacrev, in the functorch package [95]. Finally, we can rewrite the complete sensitivities in the tensorial form as

d𝐽
d𝝆 =

(

d𝝆̃
d𝝆

)⊤
⋅
(

d𝝆
d𝝆̃

)⊤
⋅
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𝑁
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)⊤

⋅

(
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)⊤

⋅

(

d𝐂𝑖

d𝝃𝑘

)⊤

⋅
d𝐽
d𝐂𝑖

, 𝑗 = 1, 2,… ,𝑀𝚋𝚕𝚘𝚌𝚔, (B.3)

where 𝝃𝑗 is the vector form of the physical frequency variable 𝑗 defined as

𝝃𝑗 =
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with its 𝑒th component (𝜉𝑗,𝑒) representing the physical frequency variable 𝑗 of macro-element 𝑒 in FEA.
To verify the aforementioned sensitivity analysis, we use the optimized design in Fig. 7(e) as an example for conducting the

ensitivity verification. Specifically, we undertake a random sampling of 30 macro-elements for all design variables, 𝜌 and 𝜉1–𝜉4. We
hen use Eq. (B.3) to compute the formula-based sensitivity values during the final optimization iteration. In parallel, we execute a
orward finite difference approach for the same set of macro-elements to recompute the sensitivities. Fig. B.12 shows the comparisons
etween the formula-based and the finite difference values of the objective function, strain energy constraint, and volume constraint.
he relative 2-norm errors of the three sets of sensitivities are 4.896×10−6, 1.697×10−6, and 1.190×10−7, respectively, underscoring
he precision and accuracy of the sensitivity analysis previously outlined.

ppendix C. Supplementary analysis of the mechanical displacement cloaking example

This section presents supplementary results (Fig. C.13) for the mechanical displacement cloaking example discussed in Sec-
ion 4.1. In contrast to the structure outlined in Section 4.1, Fig. C.13(d) demonstrates a modification where a disk-shaped void
as been introduced into the structure, and a ring-shaped designable region has been defined. Comparing this configuration to the
eference structure (Fig. C.13(b)–(c)), we observe that the introduction of the void region results in significant alterations in the
isplacement fields in both directions (Fig. C.13(e)–(f)). This shift is quantified by the relative errors, 𝑒𝑥 = 33.4% and 𝑒𝑦 = 7.6%. To
ecover the displacement fields, we utilize the proposed methodology to optimize an irregular multiscale structure (Fig. C.13(g)).
ubsequently, we analyze its displacement fields (Fig. C.13(h)–(i)) using standard FEA. The results indicate a satisfactory mechanical
25

loaking effect, as evidenced by the relative errors, 𝑒𝑥 = 4.0% and 𝑒𝑦 = 1.4%.
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Fig. C.13. Supplementary results of the mechanical displacement cloaking example in Section 4.1. Herein, we dig a disk-shaped void in the structure with a
ring-shaped designable region, and the mechanical displacement cloaking effect is still achievable, as quantified by the relative errors, 𝑒𝑥 = 4.0% and 𝑒𝑦 = 1.4%.

Appendix D. Proposed two-grid projection scheme

The virtual growth algorithm in [71] constrains the building blocks and the cells containing them to square shapes in 2D and
cubic shapes in 3D. However, in scenarios involving irregular design domains as depicted in Figs. 7 and 10, it is often preferable
to employ an unstructured grid for reducing the zigzagged boundaries of the optimized designs. To facilitate the application of the
virtual growth algorithm to these unstructured grids, we introduce a two-grid projection scheme as illustrated in Fig. D.14. In this
scheme, we project the optimized physical density and frequency fields from an unstructured background grid, used for topology
optimization, onto a structured foreground grid, employed for virtual growth (Fig. D.14(a)–(b)). Subsequently, we implement the
virtual growth algorithm on the foreground mesh using the projected fields to generate optimized irregular architectural structures
(Fig. D.14(b)–(c)). Optionally, we can further refine the generated structures to align with the original boundaries. Consequently,
these generated structures conform to the optimized physical density and frequency fields defined on the unstructured background
grid at the macroscale, while the building blocks adhere to a structured foreground grid at the microscale.

In this proposed scheme, a pivotal step involves determining the projected fields for the foreground grid (Fig. D.14(a)–(b)).
To accomplish this goal, we iterate over all foreground macro-elements, allowing each foreground macro-element to inherit the
optimized fields from the background grid. Specifically, we require that foreground macro-element 𝑖

• is a passive solid if this macro-element is completely within passive solid background macro-elements,
• is a passive void if this macro-element does not intersect with any designable background macro-elements and this macro-

element is not passive solid,
• and otherwise inherits the optimized fields from background macro-element 𝑞 with 𝑞 computed as
26
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Fig. D.14. Illustration of the proposed two-grid projection scheme. (a) An unstructured background grid used for topology optimization. This grid consists of one
passive solid, one passive void, and two designable macro-elements with optimized fields. Each background macro-element can be further divided into multiple
sub-elements. (b) A foreground grid with projected fields. Each foreground macro-element can also be further divided into multiple sub-elements. (c) Optimized
irregular multiscale structure generated based on the foreground grid.

𝑞 = argmax
𝑗

|𝛺𝚏𝚘𝚛𝚎
𝑖 ∩𝛺𝚋𝚊𝚌𝚔

𝑗 |

|𝛺𝚏𝚘𝚛𝚎
𝑖 |

where 𝛺𝚏𝚘𝚛𝚎
𝑖 and 𝛺𝚋𝚊𝚌𝚔

𝑗 are the spaces occupied by foreground macro-element 𝑖 and background macro-element 𝑗, respectively. These
rules maintain the design’s integrity after the cutting (Fig. D.14(c)).

The rules outlined above involve the computation of intersection areas between arbitrary polygons in 2D and intersection volumes
between arbitrary polyhedra in 3D. To handle these intricate calculations, we initiate the process by identifying all solid and
void background macro-elements,  and  , respectively. Subsequently, each background macro-element is divided into 𝑁𝚋𝚊𝚌𝚔

𝚜𝚞𝚋
sub-

elements, and each foreground macro-element undergoes subdivision into 𝑁𝚏𝚘𝚛𝚎
𝚜𝚞𝚋

sub-elements. Furthermore, we determine the center
coordinates of these sub-elements using the PyVista package [73]. Moving forward, for a given foreground macro-element, we iterate
through its sub-elements and utilize the GeoPandas [96] and Shapely [97] packages to ascertain whether the center of a specific sub-
element lies within the background grid. If it does, we proceed to identify the closest background sub-element and subsequently the
associated background macro-element. This information is stored in a vector 𝐑 with 𝑅𝑖 = 𝑗 signifying that foreground sub-element
𝑖 is within background macro-element 𝑗, while 𝑅𝑖 = 0 indicates that foreground sub-element 𝑖 is not within the background grid.
For later use, we convert the vector 𝐑 to a set  by retaining its unique components. Finally, we can mathematically reformulate
the above rules as follows: foreground macro-element 𝑖

• is a passive solid if  ⊆ ,
• is a passive void if  ⊈  and  ⊆  ∪  ∪ {0},
• and otherwise inherits the optimized fields from background macro-element 𝑞 with 𝑞 defined as

𝑞 = Mode(𝐑) and 𝑞 ∉  ∪  ∪ {0}.

Algorithm 5 shows the detailed procedure of the proposed two-grid projection scheme. Notably, this proposed scheme imposes
no restrictions on the geometry of either the background or foreground grid, enabling the projection of optimized fields from a
structured/unstructured background grid onto another structured/unstructured foreground grid. To implement this algorithm, we
have utilized an in-house Python code [74] augmented by the previously mentioned PyVista [73], GeoPandas [96], and Shapely [97]
extensions. These extensions significantly enhance computational efficiency, replacing the need for certain while-loops in Algori-
thm 5.
27
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Algorithm 5: Two-grid scheme for projecting the optimized fields
1 Inputs: the number of foreground macro-elements, 𝑁fore; the number of sub-elements in each background macro-element,

𝑁back
sub ; the number of sub-elements in each foreground macro-element, 𝑁fore

sub ;
2 Find all solid and void background macro-elements,  and  , respectively;
3 Subdivide each background macro-element into 𝑁back

sub sub-elements;
4 Subdivide each foreground macro-element into 𝑁fore

sub sub-elements;
5 Initialize the foreground macro-element count, 𝑛fore ← 1;
6 while 𝑛fore ≤ 𝑁fore do
7 Initialize a relation vector, 𝐑 ← 𝟎 ∈ R𝑁fore

sub . Here 𝑅𝑖 = 𝑗 represents that sub-element 𝑖 of the current foreground grid
(𝑛fore) is within background macro-element 𝑗; 𝑅𝑖 = 0 if sub-element 𝑖 does not belong to any background
macro-element;

8 Initialize the foreground sub-element count, 𝑛foresub ← 1;
9 while 𝑛foresub ≤ 𝑁fore

sub do
10 if foreground sub-element 𝑛foresub is within the background grid then
11 Find the nearest background sub-element and then its associated background macro-element, 𝑘;
12 𝑅𝑛foresub

← 𝑘;

13 end
14 𝑛foresub ← 𝑛foresub + 1;
15 end
16 Let  denote unique components in 𝐑;
17 if  ⊆  then
18 Foreground macro-element 𝑛fore is solid;
19 else if  ⊈  and  ⊆  ∪  ∪ {0} then
20 Foreground macro-element 𝑛fore is void;
21 else
22 Remove all components in 𝐑 if they are also in  ∪  ∪ {0};
23 Foreground macro-element 𝑛fore inherits the optimized density and frequency fields of background macro-element

𝑞 = Mode(𝐑);
24 end
25 𝑛fore ← 𝑛fore + 1;
26 end
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